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TE CHNICAL ME MORANDUM X- 64669

VIBRATION MANUAL

INTRODUCTION

The vibration engineec is mainly concerned with keeping the vibrations

of a space vehicle to a level which is not detrimental to the man or the

machine and designing the m_.chine to survive the environment. The main

source of mechanical vibrations in vehicles in the rocket engines which

generate vibration and acous, ic energy over a wide range of frequencies.

The resulting vibration environment can be severe with respect to airframe

fatigue and damage to equipment.

To ensure the structural and functional integrity of the vehicle systems,

it is necessary to determine the vibration environment of a vehicle or com-

ponent. This environment can be approximated by analytical methods, or it

can be predicted by comparison to the known vibration levels of a similar ve-

hicle. If the vehicle is available, the environment can be determined by static

firings and flight tests.

The known vibration environment can then be approximately reproduced

or simulated in the laboratory to improve the design or to prove adequacy of

the vehicle or components. Static firings and flight tests can be considered
as methods to obtain the vibration environment and a/so as environmental tests

of the vehicle.

e

This report describes how analysis and evaluation of data from static

firings and flight tests yield the information necessary for writing vibration

specifications in environmental testing.

This report is intended to help to correlate the terms, ideas, and

methods of the groups concerned with vibrations, and to promote better

understanding and coordination between all groups by serving as a g_aide in
the vibration field.



SECTION I. SOURCESOF VIBRATION

To understand the problems of space vehicle vibrations, it is necessary

to have a general background in the various sources of these vibrations. This

section provides some general information regarding these sources and their
causes. A more detailed discussion of these sources of vibration is beyond

the scope of this section and will not .be included. Additional considerations

on sources of vibration excitation are presented in Section XIV while Refer-

ence 1, 2, and 3 provide comprehensive coverage of this subject.

A. Sources ancl Causes of Vibration

A space vehicle may have many different causes of vibration, but each

one can be characterized by one of the following sources:

1. Acoustic.

2. Aerodynamic.

3. Mechanical.

These sources of vibration vary in predominance depending upon the

design of the vehicle, the design of the launch pad, the phase of the vehicle

flight, and the total mission of the .vehicle.

1. ACOUSTIC

Sound fields provide the excitation energy for acoustically induced

vibrations. Acoustic fields may be generated in many ways. The sound

field of the rocket engine itself is q_.used by the acoustic energy generated in

the rocket engine because of moving parts, fuel flow, and fuel combustion.

The sound field of the turbulent exhaust from the rocket engine has

its origin downstream from the plane of the engine exhaust. This exhaust

turbulence produces a more severe sound field in the vehicle than does the

engine itself, and is considered to be the most predominant cause of vehicle
vibration while the vehicle is in the atmosphere at speeds below Mach 1.

The sound field of the turbulent wake generated by the engine exhaust

induces structural vibr,_-tion. Structures susceptible to acoustic (also

aerodynaniic) pressures are skin panels, skin stiffeners, and bulkheads [ 1].



The extent of this vibration is dependentuponthe frequency spectrum, ampli-
tude, and spacecorrelation of the soundfield plus the mechanical impedance
of the structure [ 2].

2. AE RODYNAMIC
. ,. ,,

Several aerodynamic phenomena exist that are associated with high-

speed flightin the atmosphere which supply excitationenergy that induces

vehicle vibration. Some of the aerodynamic effectsthat cause vehicle vibra-

tion are as follows: .......

a. Pressure fluctuations in the turbulent boundary layer around
the vehicle.

be

instability.

Flutter of a fin or panel in the airstream due to dynamic

c. Turbulent wakes generated by air flow past vehicle projections

in atmospheric flight.

d. Flow over recesses and cavities.

e. Oscillating shock waves that may be attached to the vehicle
surface. _....

f. Buffet flow separation, which occurs when the air in the

boundary layer is forced to flow around sharp corners.

g. High-velocity flow through pipes.

Aerodynamically induced exc itation:normally reach, s maxim um value s

in the vicinity of Mach 1 and maximum dynamic pressure (max q).

3. MECHANICAL

Mechanical sources of vibration originate from direct mechanical

excitation. The main mechanical source of vibration usually comes from the

engines and related equipment, such as pumps, motors, compressors, and

generators. - -

These vibration sources originate iii:_he acceleration of moving parts

and in the periodic variations of gas, electrical, and other energy forces.

3



Thesemechanicalvibration forces act both as forces within the equipment

and as external forces [ 3]. In outer space, when airborne sources of exci-

tation have ceased to exist, rocket engine operation will continue to induce

mechanically coupled vibration. This type of vibration will be most severe

at positions near the engine and diminish at more remote locations because of

the damping and impedance mismatch inherent in the vehicle structure.

High magnitude transient vibration levels, caused by rapid pressure

changes at engine ignition and cutoff, cause a transient excitation of the

structure. These transients are short in duration and are measured in

milliseconds.

Other mechanical sources of vibration are as follows:

a. Transportation of the vehicle from one site to another.

b. Mechanical release of the vehicle from the launch pad by

explosive bolts or some quick-release device.

c. Engine gimballing.

d. Variable thrust because of rough combustion.

e. Separation of the stages by mechanical means, such as explosive

charges, retro rockets, and ullage rockets.

f. Landing impact of a recoverable vehicle.

g. Propellant sloshing.

Mechanical vibrations that are high in magnitude and of long duration

can cause wear in contact surfaces, equipment malfunction, crew discomfort,

and, most important, structural fatigue.

Complete Vibration Environment

The complete vibration environment of a vehicle includes all vibration

experienced from manufacture to the completion of a mission.

The vehicle must first be transported from the manufacturing site to

a place suitable for static firing. The vibration environment during transport

4



may be severe, dependinguponthe mode of transportation and the carriage

system. The vibration experienced during this period may be very different

from the flight environment for which the vehicle was designed.

After the vehicle has reached the test site, one or more static firings

are conducted to check the vehicle systems before delivery to the launch site.

Often, one of the most severe vibration environments is caused by exhaust
turbulence during static firing. This exhaust turbulence vibration level is

generally developed in the first few seconds after ignition and continues

throughout the static firing. The vehicle is also subjected to local mechanical

vibration, gimballing effects, and ground lmndling prior to and subsequent to
static firing.

After completing these static firings, the vehicle is aguin subjected

to transport vibration when it is taken to its permanent base, launch site, or
temporary site (in the case of a mobile launch vehicle). When the vehicle

reaches its launch site, it may again be static fired for a short duration to

perform a systems check. After the systems check is complete, the vehicle
is ready for its flight objective.

When the booster engines develop thrust while still on the launch pad,

turbulence of the exhaust stream is again a principal vibration source. All

evidence to date indicates this turbulence to be the most severe vibration

excitation source. Not only does the most severe source of vibration occur

before liftoff, but the position of the vehicle on the launch pad and the presence

of other structures in the launch vicinity provide means of reflecting the

sound field or changing the radiation pattern of the sound field. Ground reflec-

tion, which increases the sound pressure level of the vehicle, is evident up to

an altitude of at least 50 nozzle exist diameters and diminishes at highcr alti-

tudes. As the vehicle is in motion and its forward velocity increases, the

noise environment is reduced [ 2]. Some of the reasons for this decrease are
as follows:

a. Decrease of pressure with altitude.

b. Increase of time required for noise to travel forward from

source in flow behind missile.

c. Decrease in relative velocity between the jet flow and the

atm o s phe re.



The acoustic field is usually hemispherical untile the vehicle is air-

borne, and then slowly changes to spherical as the reflection from the launch

area is diminished by the gain in altitude. The sound pressure level on the

launch pad is dependent upon the type of exhaust deflection of the exhaust

tunnel, or muffler effect. This engine exhaust noise continues to affect the

vibration levels, with diminishing intensity, until the vehicle exceeds the

speed of sound or leaves the atmosphere.

While the vehicle is still in the atmosphere, other aerodynamic effects

such as flutter, pressure fluctuations, and buffeting may develop and upon

exceeding the speed of sound, oscillating shock waves are generated that can

cause high-level vibration transients.

After the vehicle has passed the speed of sound, the acoustical source

from the exhaust no longer affects vehicle vibration, and once out of the

atmosphere neither the acoustic nor the external aerodynamic sources are

present. Under these conditions, only the mechanical sources remain to

cause vibration. Re-entering the atmosphere produces aerodynamic shock

waves which can induce high-level transient vibrations, and again the vehicle

is subjected to aerodynamic pressure, tui'bulence, buffeting, and flutter.

Finally, vibration and shock which the vehicle experiences caused by landing

impact, must be considered in rnalysis of complete vehicle vibration environ-
.o

merit.



SECTION II. ACCELEROMETERS

The purpose of this section is to provide general knowledge of the

principles, characteristics, and applications of accelerometers used by the
Marshall Space Flight Center for the measurement of vibration and shock.

This section will aid in the selection of a general type of accelerometer for the

measurement of a specific environment; however, it is not intended to be a

guide for the selection of specific accelerometers. References are given at
the end of this report for more detailed information on vibration and shock

measurement and accelerometer theory. For more information about or

selection of specific accelerumeters, literature and specifications of acceler-

ometer manufactures, and laboratory test results should be consulted, some

of which are given in Referexices 4, 5, 6, 7, 8, and 9.

A. Accelerorneter Considerations

An accelerometer is a transducer which converts the acceleration

input that it experiences into a proportional output quantity. Accelerometers

are available in many forms for widely varied applications. They are used

in aircraft and missile navigation systems as well as for the measurement of

vibration and shock. The requirements for an accelerometer vary from the

extremely sensitive low-frequency types used in vehicle navigational systems

to those used in vibration and shock studies, which must be capable of sensing

motion over a very wide range of frequency and magnitude.

Virtually all accelerometers used for shock and vibratioc, iv s_re-

merit are electromeehanical transducers (sensors or pickups) ; i.., the

instrument output quantity is an electrical signal. Motion is converted into

an electrical signal because the electrical signal may be transmitted over

considerable distances (Section VI), and the electrical signal may be used as

the input to amplifiers, filters, analyzers, and recorders for data recording

and reduction purposes (Sections VII and VIII). The time history of the

electrical sigzm2 may then be used to provide information concerning the

frequency and waveform of the vibration as well as its magnitude (Section IX).

Many different types of transducers have been developed for the pur-

pose of converting mechanical motions into equivalent electrical sigzlals.

These include piezoelectric, strain gage, piezoresistive, force balance

(servo), potentiometer, variable inductance, electrokinetic, magnetostric-

rive, variable capacitance, and permanent magnet self-generating instruments.



The first five of these transducers are the most commonly used accelerometers

at MSFC. These transducers are used for structural response measurements

and will be discussed in the following paragraphs.

B. General Accelerometer Principles

All accelerometers to be discussed involve one basic mechanical

principle ; i.e., the response of a mass-spring system. The base of a mass-

spring system (seismic instrument) or its equivalent is attached to the point
where shock or vibration is to be measured, and the acceleration force is

sensed by the transducing element from the motion of the mass ( seismic

mass) relative to the base. An accelerometer operates below the natural

frequency of the mass-spring system. When the frequency of the point to be

measured is above the natural frequency of the mass-spring system, the

transducer can become either a displacement or a velocity transducer, de-

pending on whether the sensor measures displacement or velocity. The mass-

spring transducer shown schematically in Figure 1 consists of a mass sus-

pended from the transducer case by a spring. The motion of the mass within

the case may be damped by a viscous fluid, electric current, or other device

symbolized by a dashpot.

The ratio of the relative displacement amplitude of the mass-spring

system between the mass and transducer case to the acceleration amplitude

of the case is shown in Figure 2 as a function of frequency for various values

of critical damping ratio. This frequency response curve shows that the

acceleration amplitude is directly proportional to relative displacement for

frequencies well below the natural frequency of the system. Thus, this

transducer is used as an accelerometer when the vibration frequency is

below the natural frequency of the system and within the fiat portion of the

response curve. If the transducer is undamped, the response curve is

substantially fiat below approximately 20 percent of the natural frequency.

Consequently, an undamped accelerometer can be used for the measurement

of acceleration when the vibration frequency does not exceed approximately

20 percent of the natural frequency of the accelerometer. The range of

measurable frequency increases as the damping of the accelerometer is

increased, up to an optimum value of damping. When the fraction of critical

damping is approximately 0.65, an accelerometer gives reasonably accurate

results to frequencies of approximately 60 percent of the natural frequency

of the accelerometer. Thus, it can be seen that the useful frequency range

of an accelerometer increases as its natural frequency increases.
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Figure t. Schematic of a mass-spring type vibration transducer.

For a constant acceleration, the output sensitivity of an accelerometer

is dependent of the sensing parameter. If the sensing parameter employs

mass deflection, the electrical signal of the transducer may be very small

at high frequencies since the deflection of the spring is inversely proportional

to the square of the natural frequency. However, a piezoelectric acceler-
ometer has as one of _ts advantages the ability to sense acceleration directly

and the electrical signal remains relatively constant with frequency.

C. Piezoelectric (Crystal) Accelerometers

Figure 3 shows schematically a self-generating accelerometer requir-

Lug no external power in which the transducing element is a small disc of

piezoelectric (crystal) material. Piezoelectric materials generate an
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electrical charge when subjected to mechanical strain. The piezoelectric

element may be either a natural or synthetic crystal or a ceramic material,

such as barium titanate. The piezoelectric materials contain crystal domains

oriented either by nature or artifical polarization, and the slight relative

motion of these domains, resulting when a load is applied, causes an electrical

charge to be generated. Materials of this type generally exhibit high elastic

stiffness and usually act as a part of the spring in the mass-spring system.

The type shown is of compression design and consists of a seismic mass

compressed between a spring and wafer of piezoelectric material. The

inertial force experienced by the mass causes a proportional change in strain

within the crystal. This change in strain causes an electrical charge to be

developed by the crystal. If the change in strain is within the linear elastic

10
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piezoelectric accelerometer.

range, the charge will be in proportion to the inertial force or acceleration

experienced by the mass. The compression spring is preloaded such that

the crystal wafer is always maintained in compression. The resulting mech-

anical system exhibits virtually no damping and a high resonant frequency

(usually between 25 and 75 kHz).

There are various basic designs of piezoelectric accelerometers in

which the crystal element is subject to different kinds of stress. These include

the basic compression design, shear design, bender design, and different

arrangements of these basic types. Modern design of these configurations

mechanically isolates the crystal element from the instrument case to minimize

or avoid the effects of case distortion on sensitivity.

To avoid electrical difficulties known as "ground loops, " electrical

insulation between the accelerometer and ground should be provided. Some

crystal accelerometers have their active elements electrically insulated

11



from the case. Others are non-isolated electrically,and an electrically

insulatingstud or washer is used.

The piezoelectric accelerometer behaves as a charge generator, with

the generated charge proportional to acceleration. It is not capable of measure-

ment down to zero frequency, and its low-frequency response is dependent upon

the electronics of the accelerometer cable and coupling amplifier combination.

The traditional way to improve the low-frequency response has been to use

intermediate impendance matching amplifiers (cathode or source followers)

that have higher input impedance but low output impedance so that long cables

may be used to remote readout instruments without affecting sensitivity.

Charge amplifiers are often used for the same purpose. A discussion of

impedance matching electronics, amplifiers, and connecting cables (along

with the problem of cable noise) used with piezoelectric accelerometers is

given in Section VI.

Due to the high resonant frequency (usually between 25 and 75 kHz),

size, and ruggedness of crystal accelerometers, they are widely used for the

measurement of both vibration and shock. There is a great variety of instru-

ments available with a wide range of frequency response and acceleration

range characteristics. Since damping is low, instrumentation for shock

measurement should include low-pass filters to avoid falsification of data

by accelerometer "ringing" at resonant frequencies. Also, a wide variety

of operating temperature ranges is available with crystal accelerometers.

For more details of piezoelectric accelerometer characteristics and a com-

parison with other accelerometers, refer to Table 1.

Recent innovations in crystal accelerometer design include the

improviement of damping characteristics of certain models. This tends to

eliminate undesirable resonant ringing under shock application and extends the

useful frequency range. Also, progress is being made in decreasing the

extremely high output impedance characteristic of these instruments. In some

cases, source followers are incorporated directly inside the instrument case

without a significant increase in size or weight.

D. Strain Bridge Accelerometers

The electrical resistance of a wire is proportional to the applied

strain, increasing when it is stretched and decreasing when compressed

axially or when initial tension is relieved. Strain bridge accelerometers are

based on this principle. The transducing element is one or more fine strain

12
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wires arranged so an applied strain changestheir resistance in responseto the
relative desplacementbet_veena seismic mass andthe instrument case.

A typical schematic illistration of a strain bridge accelerometer

(Fig. 4) consists of a mass suspended by unbonded strain wire and employs
a viscous damping fluid. The mass is free to move in the direction of the

sensitive axis but is restrained against other motion. The inertial force

experienced by the mass when it is accelerated causes a change in the strain

of the supporting wires and a proportional change in their resistances. In

Figure 4, the strain wires act as the spring portion of the mass-spring system.

To increase sensitivity, the strain wires are arranged electrically to form the

elements of a Wheatstone-Bridge circuit, with one or more active legs. An

electrical schematic is shown at top of Figure 4. This change in strain in the

wires create bridge-resistive unbalance, and in the appropriate circuit an

output voltage appears proportional to the acceleration.

The bridge is balanced externally and maybe excited with either a

dc or ac source. The bridge can be excited by an ae carrier signal, ifdesired,

at some frequency well above the highest test frequency (see Section VI for

discussion of carrier frequencies). Ifac excitation is used, the ac excitation

frequency should be at least fivetimes higher than the highest data frequency

expected. However, ac excitationfrequencies above approximately 3 kHz

should not be attempted on long cable runs because phase balancing problems

may appear. Care should be taken not to exceed the rated excitationvoltage

of the transducer to avoid burning the strain wires.

Strain-bridge accelerometers can be used for measurements down to

zero frequency and have sensitivities up to 50 mV (rms} for full-scale output,

even with acceleration inputs of 1 g or less. Natural frequencies can be as high

as 5000 Hz, although natural frequencies of a few hundred Hz are more common.

The damping is usually about 0.7 of critical at room temperature. Since the

damping fluids generally used change viscosity with temperature, the damping

and the resonant frequency wiU be temperature sensitive. However, tempera-

ture-compensated instruments are available_ and improvements in damping

have been made. Newer fluid damping systems utilize viscous oul shearing.

Low-viscosity oil is used, permitting exceptionally small viscosity changes

in low- and high-temperature applications. This, in turn, minimizes dar_p-

ing changes. These units should be inspected frequently for damping fluid

leaks. Also, some newer model strain accelerometers incorporate gas

damping in which the movement of the seismic mass pumps a gas from a cham-

ber through a porous plug. This system has the advantage of lower damping

15
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change with temperature than previously used damping mediums. Newer

models also show a trend away from pendulous suspension to minimize

cross-axis sensitivity and sensitivity to angular accelerations. Table 1

should be referred to for more details of strain-bridge accelerometers and
a comparison with other accelerometers.

E. Piezoresistive Accelerometers

Piezoresistive strain-gage accelerometers are similar in principal

to wire strain-gage units and are based on the principle of the semiconductor

strain gage. In place of wires, small chips of semiconductor crystal are used

and arranged electrically to form the elements of a Wheatstone Bridge. These

provide greater electrical output than conventional strain wire sensing elements.

The piezoresistive accelerometer combines several advantages of
th_ strain-bridge accelerometer and the crystal accelerometer. While it is

capable of measuring response down to zero frequency, its high-frequency
limits and acceleration ranges are comparable to piezoelectric accelerometers.

For example, one model has a range of +2500 g (peak) and develops +250
mV (peak) with an excitation voltage of 10 Vdc. Damping is 0.06 critical

at a resonant frequency of 30 kHz. Therefore, the range of linear frequency

response (±5 percent} is given as 0 to 6000 Hz. A newer model for high g

measurement offers a full-scale shock range of 50 000 g and frequency cap-

abilities extending from dc to a resonant frequency of better than t00 kHz.

Table I should be referred to for more details of piezoresistive accelerometers
and a comparison with other accelerometers.

As compared to piezoelectric accelerometers, piezoresistive acceler-

ometers are just slightly larger and are excellent for shock measurements

(within the acceleration limit) because of their low-frequency capabilities.

They are less rugged than piezoelectric accelerometers; in earlier models,

a drop of a few inches onto a hard surface can cause considerable damage.
However, ruggedness has been improved. This type of accelerometer is

still in the developmental stage, and one problem has been in obtaining wider
temperature compensation.

F. Force Balance (Servo) Accelerometers

The force balance accelerometer, more popularly knows as the servo

accelerometer, is basically an electromechanical feedback system which is

actuated by a seismic mass. The essential components of the instrument are

illustrated in Figure 5. When the instrument is excited along its sensitive

17
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Figure 5. Block diagram of a force balance (servo) accelerometer.

axis by an input acceleration, the seismic mass tends to move. A position

detector, which consists of an inductive type pickoff coil in an oscillator

circuit, converts the amount of deflection of the mass relative to the case

into a proportional electrical signal. This causes a change in the output cur-
rent of a small servoamplifier. The output current is fed back to a restoring

coil located within a permanent magnetic field which develops a restoring

force (or torque) equal and opposite to the original inertia force experienced

by the mass. Thus, the complete servocircuit acts like a stiff mechanical

spring. The acceleration is now measured as a voltage drop across a resistor

18



which is in series with the output of the servoamplifier, since the restoring
current (proportional to restoring force) is a measure of the initial acceleration.

There are two classes of servoforce balance accelerometers; a pendu-

lous type, having an unbalanced pivoting mass with angular displacement, and

a nonpendulous type, having a mass which is displaced rectilinearly. In pend-
ulous types, small rotations approximate linear motion and movement is con-

sidered to be linear along a fixed axis of sensitivity. Because of this, angular

types are often sensitive to angular acceleration.

The force balance accelerometer offers much higher accuracy than

other types of accelerometers and is used extensively in inertial guidance

systems for missiles and rockets. However, since low natural frequency
and high damping are characteristic of the force balance accelerometer, its

use in measuring vibration environments is generally limited to measuring

low level accelerations at low frequencies. Force balance accelerometers

may be damped either electrically or by a viscous fluid, and have high sen-

sitivities. A typical instrument might be calibrated for a range of +10 g with

a sensitivity of 0.8 V/g. Table 1 should be referred to for more details of

force balance accelerometers and a comparison with other accelerometers.

G. PotentiometerAccelerometers

The potentiometer accelerometer consists of a mass-spring-damper

system and a potentiometer circuit, shown schematically in Figure 6. The

potentiometer wiper is connected to the seismic mass, and a constant voltage

is maintained across the resistance element of the potentiometer. When the

instrument experiences acceleration, the mass is displaced relative to the

base, causing a change in the output voltage of the potentiometer circuit.

A typical unit is fluid, air, or magnetically damped from 70 to 140

percent critical and is relatively heavy. This type of instrument is used

mainly for measuring very low accelerations at low frequencies and most

have natural frequencies below 30 Hz. One of their main disadvantages is

that their resolution is limited by the diameter of the resistance wire in

the potentiometer, thereby requiring a relatively large displacement to

produce a usable signal. Their principle advantage is their high output and

their flat response from half of their natural frequency down to zero frequency.

Table i should be referred to for more details of potentiometer accelero-

meters and a comparison with other accelerometers.
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Figure 6. Schematic of a typical potentiometer accelerometer.

H. Accelerometer Comparison

Table 1 gives a comparison of various basic accelerometer character-

istics for the accelerometers previously discussed. The various values pre-

sented here do not represent any specific accelerometers but represent an

approximate general range of the types available. It should be noted that

these accelerometers are being continuously improved and that the values

given in this chart may change with further developments and new products.

I. General Accelerometer Selection Characteristics

Certain important characteristics to consider when selecting an

accelerometer are basic and will be treated here. For specific information

or more detailed analysis, specific manufacturer specifications and literature
on accelerometers should be consulted.
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When considering an accelerometer for a given application,both

environmental and operational parameters must be given attention. Two

basic questions must be answered:

i. Will the accelerometer measure the environment? Consider:

a. Acceleration range of accelerometer.

b. Frequency response of accelerometer.

c. Frequency and amplitude ranges of the complete data

acquisitionand display system.

d. Temperature effecton sensitivity.

e. Cross-axis sensitivity.

f. Acoustic sensitivity.

g. Sensitivity of accelerometer.

2. Will the accelerometer survive the environment? Consider:

a. Temperature limits.

b. Shock and vibration damage thresholds.

c. The possibility of destructive excitement of the acceler-

ometer at or near its resonant frequency.

d. Possible excitation of associated electronics at destructive

levels.

e. Protection of transducer system from physical damage by

either mechanical or human factors.
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SECTION III.MICROPHONES

The purpose of this section is to provide a basic knowledge on the

general types of microphones used for acoustic measurements. This sec-
tion is not intended to be a guide for the selection of a specific microphone.

The three most commonly used types of microphones at MSFC are

discussed in sufficient detail to ensure an understanding of the basics of

microphone operation. The three general types of microphones are:

a. Condenser microphone.

b. Piezoelectric microphone.

c. Tuned circuit microphone.

Diagrams are presented to aid in the discussion of these general

types. A comparison of the characteristics of the three types of micro-

phones is made to give further information on the application of each general

type of microphone. A discussion on the selection of a general type of

microphone is made in the last paragraph of this section.

A. Condenser Microphones

In basic terms, the condenser microphone is analogous to an elec-

trical circuit containing a variable capacitor. The primary parts of this

microphone are the metal housing, a thin metal diaphragm, and a backplate.

The backptate and metal diaphragm are separated by an air gap and these

elements constitute the electrodes of the variable capacitor. Figure 7

illustrates the basic construction of this type of microphone.

The capacitor (diaphragm and backplate) is energized by a dc voltage

source. Sound waves impinging on the diaphragm causes a displacement of the

diaphragm. This movement will change the capacitance of the diaphragm-

backplate capacitor. A change in capacitance of the circuit changes the circuit

output voltage. The magnitude of the output voltage is proportional to the

pressure level of the sound wave.

To maintain static pre,_qure equilibrium, the air gap between the

electrodes of the capacitor is _ui_ted. This venting to the atmosphere causes
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Figure 7. Condenser microphone.

causes the major limitation of this type of microphone. When large amounts

of water vapor are present in the atmosphere, the dielectric constant of the

air between the two electrodes of the capacitor becomes very low, allowing a

direct current to flow, blocking the operation of the instrument. This same

adverse effect is caused by condensation brought about by rapid temperature

changes. Another limitation to the use of this type of microphone is the high

output impedance of the instrument, particularly at low frequencies. Because

of this high output impedance, a cathode follower, mounted close to the micro-

phone, is required. High output impedance also increases the susceptibility

to electrical leakage in atmospheres or high humidity. One adavantage of this

type of microphone is the small mass of the diaphragm which makes this type

less sensitive to vibration than many piezoelectric microphones. From the

disadvantages stated previously it is obvious that this type of microphone is

not suited for flight test measurements.
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B. Piezoelectric Microphones

The piezoelectric microphone is a self-generating transducer which

uses piezoelectric sensing elements to generate a voltage when subjected to a

physical strain. The fundamental principles of this general type of microphone

have been discussed in Section II under piezoelectric accelerometers. Since

the operation of piezoelectric elements has already been discussed, this section

will deal with the manner by which the change in strain is created in the
piezoelectric element.

Two different types of construction are available for the piezoelectric
microphone. The first of these is similar in construction to the condenser

microphone. This type consists of a diaphragm and a rigid backplate with the

piezoelectric element located between them. Sound waves impinging on the

diaphragm cause it to be displaced, thus causing a change in strain on the

piezoelectric element. This change of strain causes a generation of voltage
across the element. The second type of construction is similar but does not

us a diaphragm. Sound waves physically excite the piezoelectric element.

The sound waves hitting the element cause the change of strain, thereby

causing a generation of voltage acorss the element. Figures 8 and 9 show

these types of microphones.

The operating characteristics, frequency response and sensitivity,

of piezoelectric microphones are dependent on the kind of material which is

used as the sensing element. Elements which are most generally used in

piezoelectric microphones are Rochelle salt, barium titanite, ammonium

dihydrogen phosphate, and lead zirconium tftpate. Piezoelectric microphones

are well suited for measuring noise levels under adverse environmental

conditions. This general type of microphone can be sealed such that changes

in atmospheric conditions will not adversely affect the operation of the instru-

ment. Up to this point only the simple type of piezoelectric microphone has

been discussed and it has one major disadvantage in that it is susceptible to

vibration. The movement of the microphone diaphragm by mechanical vibra-

tion causes a change of strain on the piezoelectric element, thereby giving an

erroneous indication of the sound pressure level. Therefore, this type of

microphone cannot be used in a vibration environment without proper isolation.
Modifications on the simple microphone have been made to eliminate this dis-

advantage. This modified type uses two identical sensing elements. The first
element measures the acoustic level while the second element is reversed in the

electrical circuit to compensate for any mechanical vibration which might be

present. As with the other piezoelectric microphones this type can be sealed
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so that changes in atmospheric conditions will not effect the microphone opera-

tion. This type is shown in Figure 10. This modification makes this type of

microphone useful for mounting on flight vehicles and other vibrating structures.

DIAPHRAGM

OUTPUT

/

kf|BRATION COMPENSATING

PIEZOELECTRIC ELEMENT

PIEZOELECTRIC

ELEMENT

Figure 10. Vibration compensating piezoelectric microphone.

C. Tuned Circuit Microphone

In tuned circuit microphones, as in the previous microphones, dia-

phragm movement caused by impinging sound waves describes the basic opera-

tion of this microphone. In this type, the diaphragm is coupled in an electrical

circuit with a variable condenser of inductance coil. These elements make up

26
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a tuned electrical circuit and any movement of the diaphragm will cause a

change in the resonant frequency of the circuit. This change can be related to

the displacement of the diaphragm and thereby to the pressure level of the sound

wave. Figure 11 slmws the major elements of this microphone.

WATE R

HRAGM

I

,%

/k\

//' -
¢--- CAPACITOR PLATES

OUTPUT

Figure 11. Tuned circuit microphone.

The major advantage of a tuned circuit microphone is that it is available

with facilities for complete water cooling. This cooling system makes this

type of microphone very useful in regions of extreme temperatures.

The massive diaphragm used in this instrument makes it very suscep-

tible to mechanical vibration, in a way similar to that discussed previously
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under piezoelectric microphones. Because of this disadvantage, this type of

microphone cannot be used in a vibration environment without proper isolation.

D. Microphone Selection

The choice of the type of microphone to be used for a specified measure-

ment is dependent upon the predicted environment in which the microphone will

be required to operate. Microphones mounted on board flight vehicles are

required to measure the magnitude of the acoustic field produced by the rocket

during flight. The microphone mounted on board must be able to endure the

vibrations caused by flight and atmospheric pressure and temperature changes

caused by changing altitudes.

Vibration environments are critical to the operation of the microphone

and limit the selection of the equipment to be used. Therefore, response of

the microphone to vibration is a major consideration in microphone selection.

Figure 12 shows the vibration responses for the general types of microphonea

The piezoelectric microphones shown are not those which have vibration com-

pensating elements. Microphones that are not located on board the vehicle may

not require vibration or altitude compensation but may require temperature

and humidity compensation.

The expected pressure level of the sound wave influences the selection

of the microphone. Figure 13 gives an indication of the sensitivity ranges of

the general types of microphones. This figure indicates the voltage output per

microbar of pressure for the general types of microphones. As can be seen,

the piezoelectric microphone has the lowest range of sensitivity.

All types of microphones, with the exception of the water-cooled tuned

circuit device, will respond to rapid heat rate changes and constant heat flux

fields; therefore, the temperature environment is another item to be considered.

It is difficult to compensate for temperature effects, vibration effects,

etc. by proper calibration; therefore, the choice of a specific microphone

should be made so that these effects are minimized. Table 2 is presented

to give a indication of the relative merits of the above-mentioned general types

of microphones. The information given are ranges for the general types; the

specification sheet on the microphone should be consulted for specific micro-

phones.
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SECTION IV. MOUNTING OF VIBRATION
TRANSDUCERSAND MICROPHONES

This section presents basic considerations in the mounting of vibration

transducers and microphones. Methods of mounting and associated problems

are discussed for those types of mountings most commonly used at MSFC.
Also, refer to References 10, tl, and 12 for further discussions.

A. Vibration Transducer Mounting.

Transducer mounting is one of the most important considerations

in the design of a vibration measurement system. Basically, a mounting must

couple the transducer to the structure or component experiencing vibration

such that the transducer accurately follows the motion of the surface to which
the mounting is attached.

The method selected in mounting a transducer depends on the trans-

ducer type, the frequency and acceleration range to be measured, and the

geometry of the mounting surface. If the surface-mounting conditions permit,
the most desirable method is to attach the transducer directly to the structure.

This eliminates spring mass sy_Jtem effects inherent in some types of mountings

and, consequently, the transducer has an undistorted response to a higher fre-

quency range. This type of mounting is illustrated in Figure 14.

I. MOUNTING BLOCKS

Usually, the transducer is attached to the structure or component

by means of special mounting block or bracket. Odd shaped surfaces, the

need to align the transducer in a particular direction, or the mounting of

multiple transducers necessitates the use of adapters or blocks. Figure 15
illustrates a typical transducer-mounting block configuration where two

transducers have been mounted to measure motion in more than one direction.

Figure 16 shows a transducer-mounting block arrangement where the trans-

ducer is mounted on an odd-shaped structure requiring a block to align the
transducer sensitive axis in a particular direction.

Since the mounting block and transducer combination acts as a spring-
mass system it has its own resonant frequency and also an attenuation fre-

quency range. The lowest resonant frequency of the mounting block with the

transducer attached must be well above the highest frequency of interest so

that the magnitude and phase of motion are undistorted in the required fre-

quency range. In general, mounting blocks or brackets should be as rigid
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Figure 14. Direct mounting of transducer.
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Figure 15. Multiple mounting of transducers.
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Figure 16. Transducers mounted on odd-shape structure.
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and lig. as possible. R_gidity is important; otherwise, the mounting system

will a_te, -lte , 1crease the motion of the structure to be measured by the

transduce±. _leavy mounting blocks affect the weight and frequency of the

structure or component being vibrated and should be avoided. The mounting
block-transducer combination must be tested on a vibration shaker at a

constang g level through the required frequency range to indicate the linearity
of the system.

2. ADHESIVE BONDING

If the transducer or mounting block cannot be welded or bolted to

the structure, adhesive bonding may be used. Adhesives employed include

double-backed tape and various types of cements (epoxies, dental cements,

etc. ). If the double-back tape is used, test frequencies should be kept below

2000 Hz [ 10] since above this frequency the transducer will not accurately

follow the structural motion. Acceleration for a tape-mounted assembly should

be restricted to less than 3 g since the tape may break loose at higher levels.

If cements are used to secure the mounting to the test specimen, the trans-
ducer readings are not usually reliable above 5000 Hz. The use of adhesives

should be avoided in cryogenic environments since they experience elasticity

changes and loss of adhesion at low temperature resulting in a loss of reliability
for the measurement.

A problem with cemented assemblies is their deceptively sturdy

appearance. The strength of a cemented mounting cannot necessarily be

judged by hand pressure. Since a calibration by vibration cannot be performed

on flight vehicles after the assembly is cemented in place, the actual quality

of the mounting cannot be verified. The integrity of the mount must be en-

sured by laboratory evaluation of the various cements and careful mounting
techniques.

B. Microphone Mounting

Since the prim, ary function of a microphone is to obtain a meaningful

measurement of an acoustic field, the microphone mounting must be designed

to this objective. Microphone directivity and the acoustic geometry of the test

area must be considered when selecting microphone locations. Microphone

elements are usually sensitive to vibration and must be isolated from support

vibration. In general, there are two methods of vibration isolation employed:

mechanical isolation and electrical isolation. The choice of isolation technique

is governed by the environment to which the microphone will be subjected.
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1. MECHANICALLY ISOLATED MICROPHONES

Mechanically isolated microphones are frequently employedfor field
measurementsbut are not generally used for either static testing or flight
testing. Commercially available vibration isolators may be used to mount the

microphone, but they must be used with caution. If the isolator microphone

natural frequencies are within the acoustic frequency range of interest, a true

reading cannot be obtained from the microphone. This problem makes it

difficult to properly isolate microphones located on flight vehicles by mechan-

ical methods. However, for mid- and far-field measurements, microphones

can be mounted directly to concrete or similar massive type structures.

Massive structures effectively isolate the microphone from mechanical

vibration within the acoustic frequency range of interest. Other techniques

for field measurements support the microphones by suspension systems that

isolate the transducer from support vibrations. Figure 17 illustrates a

method for obtaining microphone measurements at various altitudes while

isolating the microphones from vibration by suspension from balloons.

2. ELECTRICALLY ISOLATED MICROPHONES

Flight and static test vehicles usually employ rigidly mounted

microphones that are electrically isolated from vibration. The piezoelectric

types described in Section III are ideally suited for flight measurements.

Mounting techniques for this microphone type are generally the same as

discussed previously for vibration transducers. Special mounting consider-

ations are necessary for flight measurements caused by the acoustic environ-

ment. The external skin of the flight vehicle is subjected to acoustic noise

from several sources (see Section I) and Figure 18 illustrates a mounting

designed to measure this external sound level. One of the microphones

shown in Figure 18 is flush mounted to permit measurement of the boundary

layer acoustic noise and other external noise without disturbing the aero-

dynamic shape of the vehicle. Figure 18 also shows an electrically isolated
microphone mounted on a ring frame to measure the vehicle internal noise
level.

¢. Associated Faclors - Transducer Mounting

In addition to the method of attachment, there are many other factors

to consider in the mounting of transducers. The following paragraphs outline

some factors associated with the mounting of accelerometers and microphones.
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Figure 18. Typical flight vehicle microphone mountings.

i. TEMPERATURE EFFECTS

Some transducers exhibit high sensitivity to rate-of-change of

temperature, called pyroelectric effect. The pyroelectric effect should not

_e confused with ordinary ambient temperature effect. Some transducers

suddenly cooled or heated during a test react violently in the output response.
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2. ELECTRICAL ISOLATION

A transducer should be isolated electrically from the ground to decrease

the influence of ground loops. When threaded holes can be used, electrically
isolated mounting studs are commercially available. However, these cannot

be used on some hardware such as tubing, cameras, solar cells, etc., and

other methods of isolation are required. A practical method useful for many

applications is to cement the transducer in place with insulating material in

between. The minimum amount of insulating material should be used to

decrease the spring-mass effect in the vibration environment.

3. CABLE ROUTING

Transducer cable termination and routing can become important for

some applications. Routings should be carefully considered to minimize the

danger of physical damage and triboelectric effects. Too much slack in the

cable often results in spurious signals. Movement of the cable, either jerking

or steady state vibration, is an important source of noise.

4. MAGNETIC FIELDS

There are instances whe.e transducers have to work in the presences

of strong magnetic forces. Interference might develop at either the transducer

or the connecting cables. The center conductor of many cables is paramagnetic

and is a possible interference source. Auxiliary cable vibrations which could

interfere with case-sensitive transducers might be caused by ac magnetic
fields.

5. TRANSDUCER LOCATIONS

All transducer locations should be accurately identified and the

mounting described by photographs or drawings. The orientation of the trans-

ducer sensitive axis on the test specimen or flight vehicle must be completely

defined to permit proper data evaluation. This is extremely important in the
evaluation of all vibration and acousitc data.
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SECTIONV. CALIBRATION

This section defines calibration procedures and problems associated

with the dynamic instrumentation of launch vehicles. The material presented

is general and deals with basic considerations related to any vibration or

acoustic data acquisition system calibration. The nature of dynamic data is

discussed and basic relationships used in sinusoidal calibration techniques

are derived. Calibration procedures are discussed for transducers, data

transmission, and data recording systems. The dynamic systems discussed

are those for measuring vibration, acoustic, a_d shock environments, and are

characterized by high-frequency response requirements. For further dis-

cussions, refer to References 13, 14, and 15.

A. General

The purpose of calibration is to determine the relationship between

the final observed value of data and the true value of the environment at the

sensing instrument location. When this relationship is known, the observed

values may be properly interpreted. The calibration techniques which are

most directly applicable to a particular instrumentation system will depend

on the components of the system, system location and use, and the type of
measurement.

Regardless of the method used in calibration, certain principles

must be followed whenever possible. These principles are listed below;

1. The calibration should cover the expected range of c: zron-

mental conditions. This means that the effect of frequency, amplitude,

temperature, and other variables should be determined and accounted for

in the calibration procedure when applicable.

2. Reference standards must be reliable. The accuracy of the
calibration is, at best, no better than that of the reference.

3. Repeatability of calibration measurements should be established

within limits to determine reliability of data. This requires several tests

in which the same reference is applied repeatedly and the resulting indications

are observed and recorded. The variation in these results indicates probable

errors because of system characteristics, as determined by statistical analy-
sis.
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The most desirable calibration procedure for vehicular vibration and

acoustic measurements would be a complete end-to-end stimulation; i.e.,

excitation of the transducer with a known environment equivalent to the expected

environment and observation of the resultant output from the data reduction

system. However, in most cases, this procedure is unrealistic because of its

complexity. Therefore, it is usually necessary to calibrate the transducer sub-

system independently of the data transmission and data recording subsystems.

B. The Nature of Dynamic Data

Dynamic data are usually broad-band random waveshapes which can be

described by three parameters:

1. The magnitude of the measured quantity; e.g., power spectra/

density, sound pressure level, etc.

2. The variation of magnitude with respect to frequency; i.e., spec o
tral characteristics.

3. The time history of magnitude at any particular frequency or band

of frequencies.

These random data are analyzed by statistical methods in terms of mean-square

values, probability density functions, power spectral density, etc. Other

statistical methods may use correlation techniques to isolate periodic functions

that are superimposed on random functions. Although random data are most

commonly encountered in practice, it can be shown that sinusoidal calibration

is applicable.

1. SINUSOIDAL CALIBRATION AND MATHEMATICAL RELATIONS

Instruments used to acquire high-frequency random wave data are often

calibrated by application of a sinusoidal waveform. This is true whether the

environment is simulated mechanically or electrically. A major advantage

of sinusoidal calibration is the ability to calculate exactly the parameters that

describe the waveform or environment. The following relationships are pre-

sented since they are commonly employed in sinusoidal calibration.

Sinusoidal vibration may be described by the equation of displacement

X=X sin wt
O

4O



where

X = instaneous displacement

X = peak displacement
o

t = time

= angular frequency.

Differentiating yields the linear velocity

X = X - cos wt
O

Differentiating again gives instantaneous acceleration

X'=-X w 2sin wt
o

Now, since angular frequency (w) is related to cyclic frequency (f) by the

equation

¢o = 2_rf

and acceleration may be expressed in terms of g-level as

K
g

g

-4X _2sinwt
o

K
g

where K = gravitational constant.
g

Peak acceleration i_ obtained by setting sin wt to _-1, its maximum

possible values.

4X 7r 2 f2
0

G =±
p K

g
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Acceleration levels are commonly discussed in terms of peak-to-peak values

which represent the "double amplitude" values, or twice the peak values

although in flight measurements the range is specified in _ Gp, which is a
peak value

G = 2G
p-P P

The acceleration level which is considered representative of the

vibratory energy level is the root-mean-square value, or rms level. This is

the common measure of random vibration data and Ls represented mathe-

matically as

T

1 / gZd tOrm s "=
0

where T is the time of integration. This indicates thatthe rms level is

the square root of the sum of the squared mean instantaneous values.

For a sinusoidal function,

G

G =--P'-

rms _-_

Similar derivations for random Gaussian motion are found in Reference

10. However, in random waveforms, it is not possible to relate rms or aver-

age values to peak values exactly. The rms-to-mean ratio is defined a_ the --_
form factor of a wave. The form factor of a sine wave is 1.11 while the form

factor of a random Gaussian noise is 1.26. Consequently, when an averaging

meter which has been calibrated with a sine wave to indicate rms is used with

random noise, the reading must be corrected by multiplying by the ratio

1.26/1.11 or 1.14.

C. Transducer SubsystemCalibration

The calibration of vibration and acoustic measuring transducers con-

sists of determining their sensitivity or simply the ratio of output to input.
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The specific information required for transducer calibration depends on the

instrument type and intended use. Flight measurements, field measurements,

laboratory measurements, etc., require different approaches to the problem
of calibration.

The output-to-input ratio must be known for all frequencies that the

transducer will experience. Variations in environmental conditions may

necessitate the determination of the effects of temperature, supply voltage
variations, radiation, acoustic noise, electromagnetic field, altitude, and

humidity upon the transducer. The linearity of the transducer should be

checked over the full range of magnitude of vibration or sound pressure level.

1. ACCELEROMETER SUBSYSTEM CALIBRATION

Calibration of accelerometers is performed by excitation under

controlled laboratory conditions. At the beginning of laboratory calibration,

the accelerometer subsystem gain should be adjusted such that the subsystem

output is equivalent to that of the signal preconditioning circuit voltage. This
adjustment should be made while vibrating the accelerometer at a nominal

frequency and at the full-scale acceleration level within the capabilities of
the excitation source.

To obtain frequency response the output of the accelerometer should

be measured over the full frequency spectrum of the anticipated environment.

The acceleration level should be selected so that the excitation amplitude

limitations are not exceeded during the calibration procedure.

Linearity can be checked by setting the transducer acceleration level

at a percentage of the desired full-scale acceleration level and recording the

system output. This process is repeated at higher percentages up to 100 per-

cent full-scale and the data plotted to check linearity. Normal increments

are 20 or 25 percent with a return to the lowest percentage point after reach-

ing full-scale to determine hysterisis characteristics. The accelerometer

should be vibrated at a nominal frequency during this check, or, if a resonant

beam is required, the resonant frequency of the beam should be used.

a. Gravity, Methods

Some types of accelerometers can be calibrated under static conditions

by means of earth gravity and centrifuge devices. These instruments generally

have response at zero frequency and include the following types:
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1. Wire strain bridge.

2. Servo ( force-balance).

3. Piezoresistive.

4. Potentiometer.

The 2-g or "Flip" calibration method takes advantage of the zero

frequency or static response of an accelerometer. If an accelerometer is
mounted with its sensitive axis in a vertical position, it senses the 1-g

acceleration of the earthVs gravitational field. If the accelerometer is turned

90 degrees so that its sensitive axis is parallel to the local horizontal, the
instrument senses, zero acceleration. If it is turned 90 degrees again, it is

180 degrees from its original position, and it senses the earthls gravitational

field in the opposite direction. It oould be said to go from a positive l-g to

a negative 1-g level, a total excursion of 2 g.

This calibration procedure has inherent accuracy. It is important

to use good leveling techniques and to measure the 90-degree angle changes

accurately. A spirit level and square are usually sufficient for the accuracy
desired in field measurements.

Again, it is important to have the same transducer input voltage level

for beth calibration and data acquisition.

This method is only useful for accelerometers whose operating range

is low enough for the 2-g calibration signal to be a significant portion of the

expected data levels.

b. Centrifuge Method

A calibration method similar to the earth gravity technique is the

centrifuge method. In this method, a centrifuge is used to apply constant
acceleration to the vibration transducer. The centrifugv is usually a balanced

table that rotates about a vertical axis. Cable leads from the transducer and

power supply are usually brought to the table through low noise sliprings and

brushes. Centrifuges are commercially available that provide acceleration

levels up to 100 g and special machines are available that produce much higher
levels. Accelerometers that have a frequency range down to zero Hz and

have negligible sensitivity to rotation may be calibrated on a centrifuge or

rotating table. The general accelerometer types listed in Paragraph a. above

can usually be calibrated by the centrifuge method.
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In the calibration procedure, the transducer must be mounted on the

rotating table such that its sensitive axis is exactly aligned along a radius of

the circle of rotation. The acceleration acting on the transducer is calculated

from the equation:

A = w2R

where

A

R =

acceleration

angular velocity

distance from the axis of rotation to the center of gravity
of the movable mass element inside the transducer.

c. Electrod_namic Shakers

Sinusoidal motion for the calibration of vibration transducers is

usually generated by means of an electrodynamic shaker. The electrodynamic

shakers directly convert electrical energy into sinusoidal motion. Trans-

ducers are subjected to sinusoidal motion such that the transducer produces

an'electrical signal which can be accurately measured and the ratio of

electrical output to mechanical input evaluated.

d. comparison Method

A frequently used method of calibrating a vibration transducer is by

direct comparison of the output voltage to that of a secondary standard

accelerometer. The secondary standard accelerometer has been checked

with a primary acceleration standard and is used for laboratory calibration

only. The accelerometer to be calibrated is mounted on the shaker table

or a centrifuge table back-to-back with the secondary standard such that

the two accelerometers experience the same vibration environment. This

is done by locating the accelerometers so that their sensitive axes are

directly in line with each other and with the direction of applied acceleration.

This often results in the bases of the accelerometers being turned toward

each other, hence the back-to-back term.

The secondary standard accelerometer has an accuracy of 3 percent

traceable to the National Bureau of Standards. The readout system is accurate

to 1 percent. The maximum difference observed when secondary standard

systems are checked against each other has been 5 percent.
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e. Piezoelectric Accelerometer Calibration Techniques

Since the frequency response of piezoelectric accelerometers does

not extend down to zero Hz, they are not calibrated under static conditions.

However, the characteristics of piezoelectric accelerometers (see Section II)

permit calibration by the application of sinusoidal motion to the transducer.

The accelerometer may be calibrated by the comparison method or by an

absolute calibration method using an electrodynamic shaker as a motion

generator.

A crystal accelerometer can be visualized as a charge generator
combined with a small and discrete amount of capacitance. The crystal

accelerometer normally requires impedance-matching devices which are

sensitive to cable length. However, if the accelerometer signal is fed into a

charge sensing amplifier, these limitations no longer apply.

A charge amplifier is a high-gain-voltage amplifier with a negative

capacity feedback. This system possesses a complex input impedance includ-

ing a dynamic capacitance portion, which is so large that any change of cable
capacitance represents an insignificant portion of the total. Therefore, large

variations of cable length have no overall effect on system sensitivity.

Many charge amplifiers contain an internal calibration source and a
dial for insertion of the individual transducer sensitivity into the amplifier.

Systems of this type require only proper setting of sensitivity, selection of the

range to be used, and recording of the internal calibration signal. No

calculations are required.

Another technique is the electrical simulation of a crystal accelerometer

by placing a capacitor in series with a voltage generator. If the transducer

sensitivity and the value of the capacitance are known, the voltage can be cal-

culated by the equation:

Q
S = m

C

where
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E = output voltage of the simulated accelerometer

C = capacitance of the simulated accelerometer

Q = charge of the accelerometer calculated by multiplying the

sensitivity (coulombs/g) by the simulated g-level.

The voltage, E, should be set to correspond to the proper acceleration level

and the charge amplifier gain set to output this voltage.

f* Strain--Ga_e Accelerometer Calibration

To understand strain-gage accelerometer calibration methods, the
electrical characteristics of this transducer must be understood.

All strain transducers are based on variations of the Wheatstone-

Bridge circuit, which consists of four resistances arranged as shown in

Figure 19. These strain-sensing resistors are constructed so that their

resistances change when a physical stimulus (in this case, acceleration) is

applied to the transducer. If the beam on which a strain-sensing resistor

is located goes into tension, the resistance increases; if it goes into com-

pression, the resistance decreases. The instrument output voltage, Eo,

appears when R 1 aeR2 or Rz _ R4, or both. The circuit characteristic is such

that the resistances in adjacent legs are subject to algebraic subtraction, and

the resistances in opposite legs add. The transducer may be constructed

with one, two, or four active ares. An active arm is one whose resistance

varies with the physical stimulus on the transducer. When the bridge circuit

has less than four active arms, find resistors are used to complete the
circuit.

V

l
Figure 19. Wheatstone-Bridge circuit.
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Referring to Figure 19, if the input voltage V is applied to the circuit

and the resistance of R t is changed by the amount AR, we have:

R ° = R 1 - A R
1

(if the change is a decrease in resistance).

If I1 is the current through R1, then

V

Ix = R_ + R 4

and the bridge output voltage,

V

now by substitution,

E = V Rt - Rt*
o 2(RI + R_)

or

AR

E ° V 2(2R 1 _ AR)

Since AR is small, the denominator can be simplified, and the term becomes

AR

E ° = V 4R--_"

From the precedtng equations, it may be seen that the transducer output is

always directly proportional to the input voltage. Where shunt calibration

techniques are not used, care must be taken to insure tluit the tnlmt voltage

level is the s_me during data acquisition as that used for calibration.
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Since the electrical output of a strain-bridge accelerometer is induced

by a resistance change caused by acceleration, the acceleration may be

simulated electrically by placing a calibration resistor parallel to one leg
of the Wheatstone Bridge. This technique is known as shunt calibration. In

Fig_are 20, the resistance value of the parallel combination, R and R1, is
C

_

R c Ri

R +R 1
e

The circuit cannot tell whether the resistance change across the resistor, Ri,
is caused by acceleration or by the insertion of the calibration resistor, R .

C

Rc

R2

Eo V

I
Figure 20. Shunt calibration system.

The sensitivity of a strain-gage accelerometer is expressed in

mV/V/g. This means that if a given magnitude of accelerative force is

imposed on the transducer, the output voltage will be a certain number of

millivolts for each input volt applied to the transducer. Since the input voltage

is always known, an output versus acceleration curve may be plotted for

the transducer. The output voltage induced by a given calibrate resistor for

the input voltage level may also be easily calculated. The calibrate resistor

may then be set equal to an acceleration level. Note that once this is done,

a specific calibrate resistor value is always equal to a specific acceleration

level, regardless of input level. Two conditions must always be satisfied

when applying the calibrate resistor: (1) it must always be applied to the

same leg of the bridge, and (2) it must always be applied at the same electri-
cal lead distance from the transducer.

Although the methods described may be used with fair accuracy, it

is preferable to apply acceleration to the transducer and plot output versus
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acceleration level. It is also preferable to read the outp,t voltage produced by

direct application of the calibrate resistor. Calibrate resistors are normally

in the range of 20 000 to 150 000 ohms. They should be precision resistors

of 0.1 percent tolerance.

2. MICROPHONE CALIBRATION

In general, the calibration requirements for microphones closely

parallel those previously discussed for acceleremeters. There should be a

complete set of calibration curves available on each microphone. The environ-

ments in which the microphone will be operated should be determined for each

application, and the response of the microphone to these environments should

be defined. In the case of new microphones, the manufacturerls curves and

specifications may partially fulfill these requirements. However, as the

microphone is used, it must be calibrated periodically to ensure its continued

satisfactory operation. The period between calibrations depends upon the

frequency of microphone usage. All microphones should be calibrated a

minimum of once every 6 months with a National Bureau of Standards calibrated

reference standard. Each microphone should be calibrated prior to (pre-cal)

and after (post-cal) each test application to determine possible alteration of

the microphone response as a result of the test environments.

Microphones may be calibrated by several methods depending largely

upon the particular microphone and the type of calibration required. The three

basic microphone calibration systems most commonly used at MSFC are:

a. High-intensity pistonphone system.

b. Plane wave tube system.

c. High-intensity calibration system.

a. Pistonphone System

The pistonphone system utilized a pistonphone, high-impedance pre-

amplifier, voltmeter, counter, and associated power supplies. The piston-

phone consists of two electrically driven pistons of different size operating

in a known volume. The cyclic motion of the piston generates a sinusoidal

pressure whose sound pressure level (SPL) value has been predetermined

from volume and displacement calculations from previous measurements.

SPL is a common acoustic term that can be described by the equation [14]

SPI

P

ffi 20 log10
0

50



where

SPL

P
rms

P
0

= sound pressure level in decibels

= root mean square pressure value in microbars

= reference pressure (at MSFC, 0.0002 microbar).

The two pistons operate in the same volume since the chamber can be moved

from one to the other. Since the pistons are of different size, their displace-

ments are different and so are the SPL values they generate. By utilizing this

characteristic and changing volume size in several discrete steps, a typical
pistonphone system can generate SPL values from ll0 to 170 dB in 10 dB

increments. A typical frequency range is from 1 to 200 Hz. This type of

calibration system is used primarily for certification of near- and far-field

microphones at regular intervals. Both sensitivity and frequency response

should be checked and records kept for the performance of each microphone.

To use the pistonphone system to check a microphone's sensitivity in

the calibrator frequency range, the microphone is inserted in the chamber

such that its diaphragm face is flush with the chamber wall, thereby not

affecting the chamber volume. The microphone output is then connected to

the preamplifier whose output is in turn connected to the voltmeter. The motor

that drives the piston is then started and set to the desired speed (frequency)

and the microphone output read from the voltmeter. Since the SPL value in the

chamber is known and the microphone output at the SPL value is known, the

sensitivity of the microphone can now be calculated. Checks of the complete

calibration system may be made using a standard reference microphone in

the system.

Do Plane Wave Tube

The plane wave tube system uses the calibration techniques of the

comparison method. A standard reference microphone is excited by a piston-

phone and the output recorded. The microphone is placed in the plane wave

tube and the tube excited until the microphone output is identical to that

generated by the pistonphone. This simulates the same sound pressure level

in the plane wave tube as existed in the pistonphone. The microphone to be

tested may be calibrated by mounting it side by side with the reference stan-

dard microphone in the plane wave tube and recording the output voltages for

comparison.

c. High Intensity Calibration System

This system is designed to calibrate microphones in the frequency

range from 5 Hz to l0 kHz at SPL levels from 110 to 190 dB. This system
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is still in the development stage and several problems have been encountered.

However, MSFC test engineers are improving the system and it promises to

be a useful method for the calibration of high-intensity microphones.

d. Far-Field Techniques

At MSFC, acoustic monitors in remote f_r-field locations are calibrated

by an acoustic calibrator and a voltage insertion technique. Microphones are

acoustically calibrated by a portable calibrator. The gain is adjusted to a

predetermined level and the voltage at the amplifier output is noted. The

calibrator is removed and the monitoring station's self-contained reference

oscillator is turned on. This amplitude stable oscillator inserts a voltage in

series with the microphone and the gain is adjusted until the output at the

amplifier is the same as that read during the acoustic calibration. The

reference oscillator may be controlled from a central monitoring station to

eliminate the necessity of an acoustic calibrate for every test.

e. Midfield Techniques

A voltage insertion method is generally used for calibration of the

piezoelectric microphones used for midfield data acquisition. An open-circuit

sensitivity for each microphone is obtained from the laboratory calibration,

and a voltage representing the desired SPL for calibration at a given location

is inserted into the system in place of the microphone. The output signal

is recorded on magnetic tape before test data recording and serves as a pre-
determined SPL reference. These calibrations should be made as close to

test time as possible.

D. Data-Transmission and Data-Recording SubsystemsCalibration

At MSFC, the calibration of the data-transmission and data-recording

subsystem involves the sending of a simulated or actual transducer subsystem

output signal through the entire system of cables, telemetry, and data recorders.

A signal representing a known percentage of full-scale is injected into the front

end of the data-transmission subsystem, and the data-recording subsystem is

referenced to this signal.

1. FLIGHT TESTING

The calibration signal input to the telemetry system should represent

full-scale peak-to-peak amplitude in all cases, except where the single-sideband
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telemetry system (SS/FM) is involved. Full-scale calibrationis required

because itdefines the data limits directly through all subsystems of the data-

transmission and data-recording equipment, and its significance is easily

understood. Time-history records of an event should include a calibration

signal to be used as a reference by the data analysis personnel.

A typical inflight calibration procedure is schematically represented

in Figure 21 for the Saturn V telemetry system. Inflight calibration for six

FM/FM assemblies and three SS/FM assemblies is accomplished over a

4.5-sec time interval. The calibrator impresses a series of six (0 to 5 V)

staircase signals to the FM/FM assemblies and a 1700 Hz, 1-V peak-to-peak

signal to the SS/FM assemblies. These calibrate signals are transmitted

and recorded during flight to calibrate the end-to-end system from telemeter

to data-recording equipment.

Preflight calibration of FM/FM telemetry systems consists of impress-

ing a 0 to 5 V step calibrate signal on the systems. The SS/FM system has a

0 to 3000 Hz sweep signal impressed on it for calibration. This SS/FM cali-

brate signal sweeps in a logarithmic manner with the rate of frequency change
proportional to frequency.

2. STATIC TESTING

If the data from the transducers are to be directly recorded during

static testing, the piezoelectric channels are calibrated by substituting an

equivalent signal voltage at the signal conditioner input terminals or by

exciting the transducer. A static test data transmission system using tele-

metry techniques is calibrated by the methods discussed in Subparagraph 1.
above.

The accelerometer may be excited by a shaker if only a few measure-

ments are required. Portable fixed-frequency shakers are available for such

purposes. One such unit produces acceleration levels adjustable up to 20

g-rms at a frequency of 120 Hz, with distortion of less than 1 percent and

accuracy of better than 98 percent. Units are also available with a fixed

frequency of 240 Hz. These signals when carried through the data transmission

and data recording system serve as a calibrated reference point for data eval-
uation.

When many measurements are required, shaking the accelerometers

becomes impractical and a voltage substitution method of calibration is re-

quired. This technique involves simulation of aceelerometer output by im-

pressing a voltage on the accelerometer channel and measuring the overall
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sensitivity. A simulated voltage should be inserted at the signal conditioner
input terminals according to the following relationship:

Cca 1

Eins = E cal Ctota1

where

E°

ms

Eca 1

Ccal

Ctotal

= insertion voltage, mV/g

= manufacturer's calibration value, mV/g

= capacitance of aecelerometer and short cable furnished by
manufacturer

= total capacitance of accelerometer, short cable, and

cable to signal conditioner input terminals, all in par-
allel.

Up to 14 accelerometer channels may be calibrated simultaneously by

using a millivolter. However, one channel is normally reserved for voice

communication. The millivolter supplies 14 separately adjustable voltages

from i to 1000 mV at frequencies from 100 to 5000 Hz with accuracies from

98 to 99 percent of the amplitude. Single-channel millivolters are also avail-
able.

After calibration, but before vehicle test, each accelerometer is tested

by tapping with a small tool on the nearby structure. The channel is monitored

on an oscilloscope to determine if the transient signal comes through. This

is commonly referred to as a "tap test" or "peck check."
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SECTIONVl. DATATRANSMISSION

The purpose of thissection is to familiarize the reader with data trans-

mission systems in general. Emphasis is given to systems that have direct

applicationto vibration data transmission. This section is divided intofour

main areas: a basic telemetry system and its components, the differenttypes

of telemetry systems used for vibration data, direct data transmission, and

system accuracy.

Ifa more rigorous mathematical discussion of the data systems is

desired, refer to References 16, 17, 18, and 19.

Data transmission may be accomplished by three methods: Radio telem-

etry, hardwire telemetry, and direct (or hardwire) transmission. A radio

telemetry system processes electricalsignals representing physical measure-

ments at a remote location, and transmits these electricalsignals by radia-

tionto a chosen location for display and recording. I-Iardwiretelemetry uses

the same processes as radio telemetry, but in Imrdwire telemetry the radio

link signals are transmitted by metallic conduction rather than by radiation

(Fig. 22). Direct data transmission (hardwire) does not involve radiation

of data signals (Fig. 23). The cable is a metallic conductor between the

transducer and the signal conditioning, display, and recording equipment.

Direct transmission is inherently more accurate than telemetering because

fewer operations are performed on the data signal.

A. Basic Telemetry System

The basic telemetry system consists of a transducer, a data trans-

mission system, and a display or storage device. Figure 22 illustrates a

basic radio telemetering system. The signal from the transducer is fed

through the data transmission system and applied to the display or storage

device. A remote signal processor, a transmitter, a receiver, and a local

signal processor form the basic transmission system. Essential differences

between various telemetry systems lie in the form of modulation.

i. REMOTE SIGNAL PROCESSOR

In some cases the transducer output can be used to modulate the trans-

mitter carrier directly, but then separate radio frequency transmitters would

be required for each measurement. To avoid this waste of the available fre-

quency spectrum, techniques have been developed which permit many
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Figure 23. Direct data transmission system.

measurements to be transmitted on one transmitter. These techniques

employ either frequency separation or time sharing. Both techniques are

known as "multiplexing," which means to transmit two or more separate

signals over one communication channel.
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Frequency separation employs separate subcarrier frequency channels
for each measurement channel. The subcarrier frequencies are spaced so

that each channel remains separate from the others.

In time sharing, a specific time is allotted for each measurement so

that each measurement is sequentially transmitted over a common data channel.

In addition to multiplexing, the remote signal processor performs any

necessary data signal conditioning. Signals may be amplified or attenuated

to make them compatible with other signals being multiplexed, and unwanted

frequencies are filtered out to prevent crosstalk. In time-multiplexed systems,

the data signal is encoded with the appropriate pulse modulation and synchro-

nization pulses are generated.

2. TRANSMITTER AND RECEIVER

The radio telemetry transmitter and receiver employ conventional tech-
niques. Telemetry systems are predominantly frequency modulated (FM)

because of the inherent immunity of FM to amplitude effects on the signals

caused by noise. Frequency modulation is modulation in which the instantaneous

frequency is the sum of the carrier center frequency and a frequency which is

a function of the modulating, (or :Jata) signal. In mathematical terms, fre-

que,_cy modulation for a sinusoidal modulating signal is-

e = E sin (w t+m sin_ost_.O C

where

e = instantaneous amplitude

E o = peak amplitude

w c = carrier angular frem_ency
t = time

w s = modulating signal angular frequency

m = modulation index (modulation index is carrier frequency

deviation divided by the modulating frequency).

The equation here is expressed as a sine function whereas Reference 16 employs

a cosine function. The two forms are equivalent, one merely is 90 degrees out

of phase with the other.

In the United States, standards have been established by the Inter-Range

Instrumentation Group (IRIG) specifying the characteristics of telemetry sys-

tems [ 17]. These standards establish a total of 44 telemetry channels in
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the very high frequency (VHF) range between225and 260MHz. Eachchannel
is assigned a minimum bandwidthof 500kHz and a maximum deviation of _:125kHz.
The channel specification is such that harmonic interference betweenchannelsis
prevented. Sincethe Bessel function of the first kind and nth order [ 16], with
argument m showsthat a frequencymodulatedwave is composedof sidebands
spacedby the modulation frequency, the modulation index (m) must be limited

to 1.64 to prevent important sidebands of the 125 kHz deviation occurring outside

the assigned 500 kHz channel. Therefore, the data bandwidth (or maximum
frequency of the data is:

frequency deviation 125 kHz
fd = modulation index = 1.64 = 76.3 kHz

This data bandwidth limitation is basic and applies to all telemetry systems that

use double FM systems. This includes the Single Sideband (SS/FM) system,
which will be treated in detail later.

The [RIG standards for telemetry receivers require that the receivers

operate o_ all telemetry frequencies between 216 and 260 MHz without design

modification [17]. The receiver is designed to have a maximum bandwidth of

600 kHz between 60 dB points and a stability of 0.005 percent. These require-

ments are imposed on the receiver to ensure flexibility of operation and a high

degree of rejection of unwanted adjacent channel and spurious signals.

3. LOCAL SIGNAL PROCESSING

The local signal processor performs the inverse function of the remote

unit. Its exact form is dictated by the remote unit multiplexing technique. It

demultiplexes the data into a form suitable for display or recording.

B. Telemetry Systems UsedFor Vibration Data

The preceding text has been a general discussion of telemetry. The fol-

lowing paragraphs are a more detailed discussion of specific systems used in

the acquisition of structural vibration data.

i. FM/FM

A standard [RIG FM/FM telemetry system employs 18 subcarrier oscil-

lators frequency modulated by transducers. These oscillators in turn frequency

modulate a radio frequency (RF) carrier. This RF carrier is transmitted to a

ground station where the composite FM signal is separated back into the original

18 subcarrier frequencies. The subcarrier signals are passed through discrim-

inators whose outputs correspond to the original transducer signal. When each
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measurement is continuous, eachsubcarrier channeldata from only one trans-
ducer. The system capacity is thenonly 18measurements.

The instantaneousfrequencyof each subcarrier oscillator is proportional
to the instantaneousamplitude of the analogvoltage from its transducer. The
rate of frequency changeof the subcarrier is proportional to the instantaneous
frequency of the transducer output. Thecenter frequencyand bandwidthof each
subcarrier channelconforms to standards establishedby IRIG. As stated pre-

viously, the equation for the frequency modulated signal is:

e= Eo sin (Wct+m sinwd t).

where sin Wct represents the carrier signal and sin wd
signal. Expanding this equation gives:

t represents the data

e = Eo{Jo(m ) sinwct+ J1 (m)[sin (w c+wd) t-sin (w c-wd ) t]

+ J2(m) [sin (Wc + 2w d) t+ sin (w c - 2Wd) t]+ ...

where

e = instantaneous amplitude

E o = peak amplitude

Jn(m) = Bessel function of the 1st kind of order n with argument m

m = modulation index (carrier frequency deviation divided by

modulating frequency)

w c = carrier angular frequency

w d = data angular frequency
t = time.

Here, the first term is the carrier component, the second term is the first-

order upper sideband, and the third term is the first-order lower sideband.

The fourth and fifth terms are second-order sideband components. It may be

seen that each modulated subcarrier signal is composed of center frequency

plus sidebands spaced at the data frequency whose amplitudes are proportional
to the modulation index.

Multiplexing the 18 subcarriers is done by assigning different center

frequencies to each of the oscillators and limiting their data bandwidth to pre-
vent channel crosstalk. The maximum deviation of each subcarrier oscillator

is limited to ±7.5 percent of its center frequency. Table 3 lists all 18 subcarrier

bands assigned by IRIG with their center frequencies, upper and lower maximum

frequency deviations, and their data frequency response. In this table the index
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TABLE 3. SUBCARRIER BANDS (_-7.5-PERCENT DEVIATION)

Band

Center Lower

Freq Limit

(Hz) (Hz)

1 400 370

2 560 518

3 730 675

4 960 888

5 1 300 1 202

6 I 700 1 572

7 2 300 2 127

8 3 000 2 775

9 3 900 3 607

10 5 400 4 995

11. 7 350 6 799

12 10 500 9 712

13 14 500 13 412

14 22 000 20 350

15 30 000 27 750

t6 40 000 37 000

t7 52 500 48 562

i8 70 000 64 750

Upper
Limit

(Hz)

430

602

785

I 032

1 399

I 828

2 473

3 225

4 t93

5 805

7 901

it 288

15 588

23 650

32 250

43 000

56 438

75 250

Freq a

Response
(Hz)

6.0

8.4

it.0

14.0

20. 0

25.0

35. 0

45. 0

59. 0

81.0

110.0

160.0

220. 0

330. 0

450. 0

600. 0

790. 0

t 050.0

a. For *7.5-percent deviation.
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of modulation is five. Figure 24 shows the frequency spectra of the equation

up to the eighth sideband pair for the four highest frequency channels with

sinusoidal modulation. The modulation frequency for each channel is the

highest allowed by IRIG standards. If the data frequency were doubled, the

spacing between sidebands and center frequency would be doubled so that cross-
talk between channels would occur.

For special broadband data applications, the subcarrier deviation can be

increased to 15 percent with the frequency excursion and data bandwidth shown

in Table 4. The 15-percent channels are designated by letters rather than

Arabic numberals. The problem of sidebands becomes severe with these

expanded channels, so only ever)' other channel can be used.

TABLE 4. SUBCARRIER BANDS (+15-PERCENT DEVIATION)

Band

A

B

C

D

E

Band Used

A

B

C

D

E

Center

Freq

(m)

22 000

30 000

40 000

Lower

Limit

(nz)

18 700

25 500

34 000

Upper

Limit

25 300

34500

46 000

Freq a

Response

(Hz)

660.0

900.

1 200.

52 500

70 000

44 625

59 500

60 375

80 500

1 600.

2 100.

Omit Bands Table 3)

13, 15, and B

14, 16, A and C

15, 17, B and D

16, 18, C and E

17 and D

a. For ±15 percent deviation
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Although the complete ]2RIG FM/FM system contains 18 subcarrier chan-
nels, only channels 2 through 18 are used. Channel 1 is omitted because its

center frequency coincides with the vehicle primary power supply frequency
of 400 Hz.

The graduated frequency response of the various channels results in

limitations on the use of certain channels for vibration data and requires the

use of the higher channels for the majority of this data. Since vibration data

are generally broadband data, channels 17 and 18 are normally used. Excep-

tions are bending mode and POGO data, which are relatively low frequency and
may be transmitted on the lower channels.

The inputs from all 17 of the modulated channels are linearly mixed and

used to frequency modulate the VHF oscillator in the transmitter. The signal

at the output of the receiver in Figure 25 is identical to the multiplexed linear
output. The data signals for each of the channels are recovered from their

composite signal by proper discriminators and filtered for display and analysis.

2. FM/FM/FM

Triple FM is employed to subdivide the standard channels into multiple

low response data channels. FM/FM/FM is a technique for trading data band-

width and accuracy for additiona, channels. Each of the high-frequency sub-

carriers can be modulated by several low-frequency subcarriers that are

modulated by their individual transducers. For example, channel 17 of link 1

in the Saturn V Instrument Unit is submultiplexed with IRIG channels 2 through

8. All other channels are standard. The data bandwidth of channels 2 through

8 is 158 Hz, instead of the normal channel 17 bandwidth of 790 Hz, for a chan-

nel efficiency of 20 percent with a maximum channel frequency response of

45 Hz. Since each FM/FM/FM channel uses two stages of modulation and the

modulation index in the second channel is limited to one or less, the data accu-
racy suffers.

3. SS/FM

The standard FM/FM telemetry system has a serious shortcoming in its

bandwidth utilization efficiency. Utilized to its maximum capacity, the total

data bandwidth of an FM/FM system operating with a deviation ratio of 5 is

4008 Hz. Because the highest subcarrier frequency required to transmit these

data is 76.3 kHz, the subcarrier data frequency utilization is less than 6 per-

cent. Because of this poor utilization, the highest frequency response obtain-

able on a standard channel is 1050 Hz, and this response is obtainable only on

one channel. An FM/FM telemetry system is incapable of handling the large

quantities of wideband dynamic data required at MSFC on present and future
vehicles.
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The SS/FM telemetry system was designedanddevelopedat MSFCas a
complement to the FM system, primarily for high-frequency dynamic measure-
ments. The system has a capacity of 15channelswith frequency responsesof
approximately 3 kHz. The maximum frequency to beaccommodatedon the RF
link is 75.8 kHz. Thetotal data bandwidthis 45kHz, which is 10times that
available with an FM/FM system. The frequency utilization efficiency is
approximately 60percent. Figures 26and 27 illustrate the SS/FM system,

The SS/FM telemetry system, like the FM/FM system, uses frequency

division multiplexing techniques to transmit multiple data channels on a common

FM carrier. Unlike the FM/FM system, each SS/FM channel has a 30 Hz to

3 kHz data frequency response. The analog voltage from each transducer modu-

lates a 455 kHz channel carrier signal. The output of the first modulator has

the lower sideband removed by a filter, and is transposed in frequency by a

second modulator to its assigned position in the multiplexed spectrum. The

multiplexer output in the form of 15 data channels, each transposed to a dif-

ferent frequency, frequency modulates a UHF FM transmitter. In addition to

the multiplexed channels modulating the transmitter, a reference signal derived

from the same master signal as the channel carriers is provided. Since fre-

quency synchronization is required in single sideband transmission, the reference

tone provides synchronization between transmitter and receiver. The reference

tone also provides an amplitude reference for both multiplexer and demultiplexer

so that rms values of the composite signal remain relatively constant.

The receiving portion of the single sideband system reverses the process

of the transmitting portion. The receiver output of a standard FM receiver is

fed through a demultiplexer, which uses the reference tone for synchronization.

Each channel is transposed from its assigned position in the spectrum to its

original frequency. The data from each channel are then amplified and fed to

appropriate readout devices.

Both the sending and receiving portions of the system employ equipment

common to all channels, along with components designed for each individual

channel. The common equipment handles the composite signal from all channels

and generates the carrier frequencies required for 'the channel frequency trans-

lations. Unlike FM/FM where channel equipment is suitable for only one specific

channel, all channel equipment in the present SS/FM system is identical and

interchangeable. The necessary frequency differences between channels for

multiplexing are generated and supplied by the common equipment.

4. TIME SHARING

Time sharing is a special application of FM/FM and SS/FM telemetry

primarily used in vibration and acoustic data acquisition. Time sharing is a
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technique for using a single subcarrier channel to sequentially carry two or

more transducer outputs, each for a finite period of time. Two- and four-

segment time sharing commutators are employed. Since both complete a cycle

of all segments in 12 seconds, the two segment commutator transmits each

measurement for 6 seconds while the four segment commutator transmits each

measurcmcnt for threc seconds.

C. Direct Data Transmission

A direct data transmission system consists of a transducer, signal con-

ditioning circuits, recorder or display unit or both, and connecting cables

( Fig. 23). In cases where the output impedance of the transducer is greatly
different from that of the cable, an impedance matching device may be required.

The direct system is potentially more accurate than telemetered data because

frequency translation or conversion is not usually involved. The accuracy actually

obtained is dependent on the components and measurement techniques used.

I. TRANSDUC ERS

Two of the most commonly used types of transducers are piezoelectric

and strain bridge, as discussed in Section II. These will be the only types con-
sidered in this section.

Strain bridge accelerometers require four conductor cables. These

cables may be either in the form of two twisted pairs or separately shielded

cabled pairs. Strain bridge accelerometers have a frequency response of 0 to
2000 Hz. This means that the response of the cable will not limit the overall

system characteristics.

Piezoelectric accelerometers are inherently wide dynamic response

devices and require a wide dynamic range for the transmission and readout

system. As a general rule, an accelerometer selected for a specific measure-

ment should have a resonant frequency fivetimes greater than the highest data

frequency expected.

Piezoelectric accelerometers have characteristic capacitance ranges of

200 to 2000 pF. If the capacitance of the cable is large with respect to the

accelerometer, the cable will "load" the accelerometer and serious degradation

of the signal will result. Cable capacitance is dependent on the type of cable

used and is directly proportional to the length of cable used. Obviously, as cable

length increases, a point will be reached when signal attenuation is no longer

acceptable. It is obvious that an accelerometer with a large characteristic

capacitance will tolerate more capacative loading than a transducer with low

capacitance.
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A solution to this problem is to isolate the accelerometer from 10ng

lengths of cable by inserting an impedance matching element in the line near
the accelerometer.

2. IMPEDANCE MATCHING

Since piezoelectric accelerometer output impedance can be high in rela-

tion to cable characteristic impedance, a matching circuit, or signal conditioner,

is needed to match the accelerometer to the transmission cable. The matching

circuit is usually a vacuum tube cathode follower (Fig. 28), or an emitter fol-

lower if transistors are used. These circuits have high input impedance to

match the accelerometer output impedance and a low output impedance to match

the cable input impedance. Output impedance of the matching circuit should be

30 to 100 ohms when used with open circuit cable of lengths up to 914.4 m

(3000 feet). Impedance values outside this range will result in introduction of

transients, and possible signal waveform distortion and attenuation.

3. TRANSMISSION CABLES

Careful consideration must be given to the type of cable used in data

transmission. Three basic types of cable are normally used: coaxial, twisted

pair-shielded, and quad-shielded

Coaxial cable is inherently unbalanced and is a natural selection to connect

an unbalanced amplifier output to the unbalanced magnetic tape recorder input.

The coaxial cable shield is sometimes erroneously believed to provide shielding

at audio frequencies. At audio frequencies, in contrast to radio frequencies,

current penetrates the braid shielding and provides a means for undesired

electromagnetic coupling to other circuits.

Twisted pair-shielded and quad-shielded cable can be used where one of

the conductors is grounded at the recorder end only. This type of cable may be

generally used where high impedance circuits are not required. This circuit

is less susceptible to noise pickup than the coaxial type by a margin of 30 to 40

decibels. However, the grounded pair is not suitable for lengths,af more than

about 914.4 m ( 3000 feet), because the frequency response cannot be made

fiat enough over the required bandwidth. For long lengths, 914.4 m (3000 feet)

or more, the shielded pair with balanced coupling transformer offers the best

choice for low noise pickup and side frequency response. It is better than

coaxial cable by a margin of 40 to 50 decibels. However, the introduction of

such a transformer may degrade low frequency response and completely elimi-

uate any very low frequency data.
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Shielded cables are subject to the triboelectric effect (voltage generated

as a result of vibration of the cable insulation). An example of the triboelectric
effect is presented in Reference 18. This effect may be avoided by special

construction which consists of providing a drainage path for the triboelectric

voltages. This consideration is especially important in selecting the cable

between the accelerometer and the impedance matching device because this

section of cable will be in a vibrational and acoustical environment. Normally
the cable furnished with the accelerometer is of low noise construction, and

should be used where possible.

Ground-loop problems in cables can be avoided by grounding cable shields

at only one location. This location is normally where the readout and recording

systems are located. This means thatthe circuR common lead is above ground

potentialall the way from the isolatedcircuit common of the accelerometer to

the recorder. Each cathode follower and amplifier used at MSFC for field

vibration measurements has an mdlwdual power supply which provides a high

degree of isolationfrom other channels and reduces the possibilityof inter-

ference between channels through the common capacitance of the power llne.

In very low frequency systems, the cable usually is equivalent to a simple

metallic conduction link. In this case, the cable series impedance is so low

and the shunt impedance is so high that the transducer sees essentially the

signal conditioning input impedance.

4. OVERALL SYSTEM FREQUENCY RESPONSE

If the frequency response characteristics of the components of a system

are not considered, it is possible for abnormally high voltages to enter the

recording electronics, resulting in unintelligible records. Undamped transducer

resonant peaks at the frequency of the FM magnetic tape carrier frequency would

cause high voltages at the recorder input if the peaks coincided with a resonant

peak caused by an improperly terminated cable driven by a low impedance

amplifier. This would result in a frequency interference effect. A beat fre-

quency would be recorded and would result in misleading data.

The lowest signal level that can be handled by a system is set by the

residual noise level of the system. The upper value is set by the overload or

overdrive capabilitiesof the amplifier which, to a great extent at higher fre-

quencies, is controlled by the capacitance load on the amplifier. The higher

the frequency, the greater the attenuation,transients, and signal distortion.
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D, System Accuracy

The following paragraphs provide some general considerations relative

to system accuracy. No attempt is made in this paragraph to completely specify

the accuracy of any particular system because systems are varied and may con-

tain different combination of components.

The accuracy of a system is a function of the accuracies of all the indi-

vidual components in the system. If a component of 95 percent accuracy is

functionally in series with other component of 95 percent accuracy, then the

system accuracy becomes . 95 x . 95 or approximately 90 percent overall.

Thus, it is seen that the accuracy of a system may be substantially lowered by

including one inaccurate component.

Frequency response of individual components in a system must also be

considered. A system that is quite accurate at one data frequency may possess

poor accuracy at another frequency.

Direct recording offers the highest system accuracy because fewer com-

ponents and operations on the data are necessary. FM/FM telemetry systems

are generally considered to have a working accuracy under ideal conditions of

about 95 percent. The SS/FM system accuracy is much lower than that of the

FM/FM system.

One of the most important factors in determining system accuracy is

the calibration of the components. Section V of this manual discusses the

calibration procedures used in data transmission systems.
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SECTIONVll. DATA RECORDING

This section provides basic information on data recording systems

and examines in some detail the systems used extensively for vibration and

acoustic data recording. Magnetic tape recorders are discussed since the

majority of vibration and acoustic data are stored on magnetic tape. Other

means of data recording such as X-Y plotters and oscillographs are also

discussed.

A. Magnetic TapeRecorders

Magnetic tape recorders are used as a means of recording and

storing data for later analysis and evaluation. The data axe recorded as an

electrical signal which can represent an unlimited variety of physical or

scientific phenomena. These physical or scientific phenomena are converted

to an electrical signal by the measuring instrument (transducer).

Tape recording systems usually fall into one of two categories:

analog or digital. Analog systems record electrical signals as a continuous

function of the input signal. Digital systems translate the electrical signal

into a series of bits or pulses (generally in the binary code) which are

required in the handling of the data by digital computers and other digital

processing systems.

i.- THE MAGNETIC RECORDING SYSTEM

The magnetic recording system consists of three basic subsystems:

the electronics, the record and reproduce head assemblies, and the tape

transport subsystem. The electronics part of the system supplies the input

data in proper form to the record head and recovers the data from the

reproduce head. The head assembly has both a record and reproduce section.
The record section impresses the input data onto the magnetic tape as

variations in local magnetization; the reproduce section reconverts these

variations into electrical signals. The tape transport drives the magnetic

tape past the head assembly at constant speed.

The magnetic tape, while not an integral part of the recording system,

is nevertheless extremely important in overall system operation. In some

instances it is the tape which imposes the limitations on performance. Care

in selecting tape to match recording requirements is well Justified.
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a. Record and Reproduce Heads

The recording heads are electromagnets which have a small gap in

the core across which the tape is moved as shown in Figure 29. As the tape

crosses this gap in the core, it acts as a magnetic shunt across the gap.

When the tape is in motion, that part which leaves the edge of the gap is left

permanently magnetized in the direction of head magnetization at that instant.

The intensity of magnetization is proportional to the instantaneous signal

current in the head at the instant that portion of the tape left the gap.

PLASTIC BACKING

LM_ _._ - TAPE
MAGNETIC FI AIR GAP

Figure 29. Basic electromagnetic tape head.

The reproduce head is an electromagnet similar to the record head.

When the magnetized tape particles are shunted across its gap, a magnetic

flux is developed in the core. As the tape moves, the variations in flux

induce a voltage in the head winding proportional to the rate of change of the

magnetic field in the gap. This voltage, with appropriate processing by the

reproduce electronics, re-creates the original input signal.

There are several important differences between the reproduction

process and the recording process. One difference is that the intensity of

magnetization of the tape corresponds to the signal current used in recording.

The tape is magnetized regardless of its speed past the tape head. It is

important that the tape speed selected be compatible to the rate of change,

or frequency, of the information to be recorded so that well-defined changes

are recorded on tape. The reproduce head does not respond directly to the

magnetic intensity of the tape, but to the rate of change of magnetic intensity.

The flux in the reproduce head is representative of the average magnetization

of the region bridging the head gap, but no voltage is induced across the

reproduce head winding unless the flux density changes. This value can only
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change when the tape moves. The magnitude of this induced voltage is pro-

portional to the rate of flax density change and the number of turns contained

in the reporduce head coil winding. From basic electrical concepts we have
the formula

where

e = magnitude of the induced voltage

N = number of coil tunes

= flux density.

be Tape Transports

The tape transports commonly used for data recording handle tapes of

either 1.27-cm (1/2-inch) or 2.54-cm (1-inch) width. The 1.27-cm (1/2-

inch) tape transport is capable of recording seven information channels spaced

side by side on the tape. The 2.54-cm (1-inch) tape transport can record 14

channels of information. However, the full transport capacity can seldom be

used for data. A channel may be required for voice annotation in addition to

speed reference channels such as "speedlock" or some other wow and flutter

compensation system.

Tape transports are divided into two general types: the reel transport

and the loop transport. Initial recording of data on magnetic tape is accom-

plished on a reel transport tape machine. This transport moves the tape from

a storage reel, across the heads, and onto a take-up reel. The recorded

information may be played back or monitored if the machine is equipped with

both record and reproduce heads.

The tape loop transport operates with a continuous loop of magnetic

tape. This feature may be used to capture a certain time segment of data in

order to produce a quasi-repetitive segment. This mechanism may also be

used as a time delay device.
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2. RECORDING METHODS

The two primary systems used in magnetic tape recording are ampli-

tude modulation (AM) or direct recording and frequency modulation (FM) re-

cording. The direct system is less complicated and requires fewer electronic

operations than FM recording, but it has poor low-frequency response character-

istics. The FM method has the distinct advantage of operating at frequencies
down to zero Hz.

a. Direct Recording

The direct recording system contains an amplifier which conditions the

input signal and generates a bias voltage and frequency. This compensates for

nonlinearities in head characteristics and magnetic tape oxide coating. Direct

reproduce amplifiers consist of an input preamplifier, a frequency equalizer

network, and an output amplifier. The frequency equalizer network character-

istics must be different for different tape speeds. For this reason, the equalizer

network is normally a "plug-in', type unit and may be quickly changed when a
change in tape speed is desired.

The frequency equalizer network is used to compensate for system

nonlinearities in order to attain a system frequency response of _-3 dB from

300 Hz to 300 kHz at a tape speed of 152.4 cm/sec (60 in./sec). System fre-

quency response decreases as the tape speed is reduced. For example, at

4. 76 cm/sec (1-7/8 in./sec) tape speed, a tape recorder would have a response

of _3 dB from 50 Hz to I0 kHz. This decrease in system frequency response is

attributable to tape saturation, tape wow and flutter, and head gap effects.

b. FM Recording

The greatest advantage of FM recording is low-frequency response. At

152.4 cm/sec (60 in./sec) tape speed, a system response of 0 to 20 000 Hz may

be attained. This technique involves frequency modulating a carrier with the

input signal and recording the frequency modulated signal at the tape saturation

level. The record amplifier consists of an input amplifier and buffer, a voltage-

controlled oscillator, and an output amplifier.

The FM reproduce system consists of a preamplifier, limtter (or

clipper), discriminator, and output filter. The output filter is changed with

tape speed. Table 5 gives FM system response at the various standard tape

speeds. Values given are for a response of +1/2 dB.
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TABLE 5. FM CARRIERRECORDREPRODUCESYSTEM
FREQUENCYRESPONSE

Tape Speed, cm/sec

(in./sec)

52.4 (60)

76.2 (30)

System Bandwidth with Standard

Output Filter (Hz)

0 to 20 000

0 to 10 000

38.1 (15)

19.05 (7-1/2)

9.52 (3-3/4)

4.76 (1-7/8)

0 to 5 000

0 to 2 500

0 to 1 250

0 to 625

For economy and ease of operation, the tape speed selected should be no

higher than necessary to capture the highest frequency components of the

data expected. The filtering characteristics of FM tape systems may be used
to eliminate undesired high frequency noise and transients.

, MAGNETIC TAPE HANDLING

Magnetic tape must be handled and stored with care. New tape should

always be degaussed before use. Tape not in use should be kept in protective

cans and stored in a cool place. Tape should never be allowed near a magnet,

electrical wire, or any device capable of generating a magnetic field. The

oxide coating should never be touched. The tape guides and heads should be

kept scrupulously clean.

B. Oscillographs

An oscillograph is a device used to convert analog electrical signals_

into a semi-permanent or permanent record called an oscillogram.

The heart of the oscillograph is the optical galvangmeter. A galvanome-

ter is a voltage-sensitive device that causes a mirror to deflect in proportion

to the applied voltage, just as a voltmeter causes a pointer to deflect when
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voltage is applied. A light beam is reflected from the mirror onto a moving

strip of photosensitive paper. Since the optical arm is long, a small angular

movement of the galvanometer mirror causes a relatively large deflection of
the light beam on the paper. Figure 30 illustrates the basic elements of an
osc illo graph.

/ LIGHT SENSITIVE PAPER

SUPPLY SPOOL /_ LAMP

j_ GALVANOMETER

_" _J MIRRORi',,,,,

• ............ ......

Figure 30. Oscillograph optical elements.

A galvanometer is an electromechanical device. Therefore, it is

subject to mechanical limitations of its ability to convert electrical signals

into proportional excursions of a light beam. The galvanometer may be

thought of as a driven spring-mass system with damping. As such, it is

capable of a limited bandwidth of "fiat" frequency response. Many different

types of galvanometers are commercially available, including those with fluid

magnetic, and electrical damping systems, i

Various recording media for osciUograms are available. The light

sensitive strip could be photographic film, light sensitive paper, or the newer

ultraviolet development paper. The first two types require photographic

development processes, with attendant time delay before the data can be

viewed. The ultraviolet developing paper exhibits the data traces within a

few seconds after exposure to an ultraviolet radiation source, such as a

fluorescent lamp. The ultraviolet developing paper has the disadvantage'of

discoloring when exposed to light and should be stored away from light.

Most oscillographs have a variable speed paper drive system. If the

analog trace is to be used for amplitude information, only relatively low paper

speeds may be used. If, however, waveshape information is desired, the

paper speed must be higher. Depending on the resolution needed 0. 254 to

2.54 cm (0.1 to 1.0 inch) of paper per cycle may be necessary. For a 100 Hz
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data signal, paper speeds of 10 and 100 inches per second would be required
for 0. 254 and 2.54 cm (0.1 and 1.0 inch) of paper per cycle, respectively.

Oscillographs are available with up to 36-channel capacity. Although

high data channel capacity is possible, channel usage is based on data

characteristics. If large amplitude galvanometer deflections are expected,

the galvanometer traces should be spaced so that the traces do not cross.

If, however, only small trace deflections are expected, larger number of

data channels may be used. This is done for ease of trace interpretation.

Other types of oscillographs exist in which optical systems are not

used. Bather, the galvanometer element directly moves a mechanical pen

which is in contact with the moving paper. As might be expected, the

galvanometer mass is much higher than in the optical system and the frequency

response is considerably lower. These systems find some application in

airplane flutter testing and space vehicle vibration testing where frequencies

are on the order of 50 Hz or less.

C. Oscillograph -Magnetic Tape System

The following system is required to convert the recorded signal on a

magnetic tape to an oscillogram. Figure 31 is a functional block diagram

of the system.

The s ignal from the tape is picked up by the reproduce head and is

amplified by the reproduce amplifier. The signal is then fed out of the tape

machine into the galvanometer driver amplifier. The galvanometer driver

output is fed into an electrical damping network and into the galvanometer.

The galvanometer mirror light beam is deflected onto the moving oscillograph

paper.

D. X-Y Plotters

The X-Y plotter uses electrical servosystems to produce a pair of

crossed motions which produce X-Y plots. The plotter consists of basic

balancing circuits plus auxiliary elements to make the instrument versatile.

The self-balancing potentiometer circuit compares an unknown external

voltage with a stable internal reference voltage. The difference between these

voltages is amplified and applied to a servo motor to drive a potentiometer

in a direction that will null any difference or error voltage. Accuracy of plots
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made by this principle is typically 0.1 percent. The full-scale range of the

plotter for each axis is obtained with input sig_.als as low as fractions of a

millivolt. Thus, the output of many low-level devices, such as thermocouples

and strain gages, may be plotted directly without additional amplification.

E. Direct Writing Recorders

A direct writing recorder may be used for slowly changing signals

or it may contain significant frequency components up to 5000 Hz. The type

of recorder should be selected based on the frequency requirements.

. X--Y SERVO TYPE

Among the least expensive direct writing recorders are the strip-

chart recorders which record analog signals of less than 1 Hz. These

recorders usually come with paper widths of 12.7 and 2.54 cm (5 and 10 in.)

with one and two writing pens, respectively. The recording paper can be

ordinary paper marked by ink pens or temperature sensitive paper marked

by a heated stylus. These recorders operate with approximately 0.1 percent

accuracy.

, REVOLVING BAND TYPE

The revolving band type recorder writes directly on electro-sensitive

paper. The principle differences in this type and other types of strip-chart

recorders are the method of writing and the writing medium. A revolving
band rapidly traverses electrically chargeable styli continuously across the

slowly-moving electro-sensitive paper at a rate of 100 passes per second.

Up to 12 channels are sampled and compared with a precision voltage ramp

on each pass. With each pass a corresponding dot for each channel is recorded

on the paper at the appropriate point by a high-voltage pulse. The primary
advantage of this recorder is the ability to record as many as 12 channels

simultaneously.

F. Oscilloscope and Camera

An oscilloscope and camera are often used to record data when un-

usually high-frequency response is required. The data waveforms are dis-

played on a cathode ray tube and photographed, usually by a polaroid camera
mounted in front of the tube face. An alternate method involves the use of a

Memoscope, which is a modified oscilloscope having the ability to store a

transient wave and display it continuously on the tube face.
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SECTION VIII. DATA REDUCTION

In general, data reduction is the translationof raw information into

simplified quantitieswhich describe the information in a manner suitablefor

engineering analysis and interpretation. For the specific case of flightvehicle

vibration data, the available raw information is usually one or more sample

amplitude time history records of the vibration response at one or more points

on the vehicle structure. The methods employed by MSFC for reducing vibration

data are described here, along with appropriate discussions of some general

considerations associated with vibration data analysis.

A. Basic Characteristics of Vibration Data

Before data reduction can be pursued in detail, itis necessary to identify

certain basic characteristics of the data. In particular, itshould be determined

ifthe vibration data are representative of a random process as opposed to a

periodic process or other deterministic processes. Perhaps the data represents

a combination of both. The procedures for reducing, analyzing, and interpreting

data representing a random vibration response are differentfrom those for

periodic vibration response. The basic characteristics of periodic and random

vibration data will now be discussed.

i. PERIODIC VIBRATION DATA

A periodic function is a special type of deterministic (analytic) function

whose amplitude time history repeats itself exactly after a time interval, T ,

called the period. In equation form, a necessary condition for a function P

y(t) to be periodic is

y(t) = y(t+Tp) . (I)

This is in contrast to other types of deterministic functions and random processes

where equation (1) becomes an inequality. That is,

y(t) _ y(t + Tp) . (2)

A periodic function may be expressed by a Fourier series as shown in equation

(3), where fl= 1/T is the frequency in'cycles per second (cps).
P
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Y(t) = C 0+C I cos (2_flt÷_1) +C2c°s (41rflt+_2)

cO

+C3cos (67rflt+_3) +...=C0+ _ CnCOS(21rnflt+ _n) (3)

In words, equation (3) says that a periodic function consists of a dc component,

Co, and an infinite number of sinusoidal components having amplitudes C andn

phases _ n" The frequencies of the sinusoidal components are all even multiples

of fl, which is called the fundamental frequency. Many periodic functions con-

sist of only a few or even a single component. For example, a sine wave has

a Fourier series in which all values of C are zero except for n = 1. In othern

cases, the fundamental frequency is absent. For example, suppose a periodic

function is formed by mixing three sine waves which have frequencies of 60,

75, and 100 Hz. The lowest common multiple is 5 Hz, so the period for the

resulting periodic function is T = 0.2 second. Hence, in the Fourier series
P

for the function, all values of C are zero except for n -- 12, n -- 15, and n -- 20.
n

Many deterministic functions are not periodic. For example, suppose
we have the sum of three sine waves which have frequencies of 60, 75, and 300/_r.

There is no common multiple since 300/7r is an irrational number, so the

resulting function is not periodic. However, in actual practice, such non-

periodic functions may be closely approximated by a periodic function and

expanded into an approximate Fourier series.

2. RANDOM VIBRATION DATA

Unlike periodic functions, the amplitude time history for a random

function never repeats itself exactly. Any given sample record represents a

unique set of circumstances, and is merely a special example out of a large

set of possible records that might have occurred. The collection of all possible

records that might have occurred is called an ensemble which forms a random

process. Thus, an amplitude time history record for a random vibration

response may be thought of as a sample record from a random process.

Since a random process is probabilistic and not an explicit function of

time, the prediction of exact amplitudes at some future time is not possible.

Thus, a random process must be described in terms of statistical averages as
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opposed to exact analytic functions. It is for this reason that the techniques

for reducing, analyzing, and interpreting random vibration data are different

from those for periodic vibration data.

The properties of a random process may be computed by taking averages

over the ensemble at any given time t. For example, the mean value (first

moment) of a random process at some time t I is computed by taking the

instantaneous amplitude of each record of the ensemble at time tl, summing the

amplitudes, and dividing by the number of records. This computation is

illustrated in Figure 32. The mean square value (second moment) at time t 1,

and the correlation between amplitudes at two different times t 1 and t 2 are

computed in a similar manner as illustrated in Figures 33 and 34.

For the general case where the mean value, mean square value, and

correlation function vary with time, the random process is said to be non-

stationary. For the special case where these three properties do not vary

with time, the random process is said to be weakly stationary. If all higher

moments (i. e., the third moment and up) are also time invariant, the random

process is said to be strongly stationary.

If a random process is stationary, the properties of single records in

the random process can be computed by taking time averages of the single

records as opposed to ensemble averages for the collection of records. The

computation of the mean value, mean square value, and correlation function

by time averaging is illustrated in Figures 32, 33, and 34. For the general
case where these three time averaged properties vary from record to record,

the random process is said to be nonergodic. For the special case where

these three time averaged properties do not vary from record to record and

thus are equal to the corresponding ensemble averaged properties, the random

process is said to be weakly ergodic. If all higher moments are also independent
of the record used, the random process is said to be strongly ergodic. Note

that only stationary random process can be ergodic.

If a vibration response is representative of a nonstationary random

process, the properties of the vibration are changing with time and can be

completely described only by taking averages over the entire ensemble at

every instant of time. If the vibration response is representative of a

stationary random process, the properties of the vibration can be described

by taking averages over the entire ensemble at any one instant of time. If a

vibration response is representative of a stationary and ergodic random

process, the properties of the vibration can be described by taking time

averages over one record from the ensemble.
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Figure 32. L omputation of mean values.
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Figure 33. Computation of mean square values.
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For the actual flight vehicle vibration problem, a single record may

represent the vibration response at some point on the structure of a given

vehicle. The collection of records needed to form an ensemble would then

represent the vibration responses at that point occurring during flights of all

vehicles of that type. However, data from a large number of vehicles of the

same type are rarely available. An ensemble may be contrived by collecting

records of the vibration response for repeated flights of the same vehicle,

where the time origin of each record is considered to be the start of each

flight. Even data of this sort are often difficult to acquire. Usually, vibration
data from only a fcw flights or perhaps just one flight are available. As a

result, the vast majority of vibration data reduction is performed by time

averaging single sample records.

B. Basic Descriptions of Vibration Data

For any time invariant vibration response, whether it be random,

periodic, or a combination of both, the simplest description of the vibration
amplitude is given by the mean square value. For a vibration record y(t)

of length T, the mean square value 72 is given by

T

-'Y" - T1 f y2 (t) dt (4)
0

where

T = Tp for periodic vibration

T -* ¢o for random vibration.

The positive square root of the mean square value gives the rms (root mean

square) value of the vibration; i.e.,

Yrms = _'_ " (5)

The mean square value is a measure of both the static and dynamic

portions of the vibration amplitude. The static portion of the vibration (the

dc component) is defined by the mean value _ as follows:
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T

- i fy = _ y(t) dt
0

(6a)

where

T = T for periodic vibration
P

T --* co for random vibration.

The dynamic portion of the vibration is defined by the mean square

value about the mean (variance) a 2 as follows:
Y

T

_ = ± f [y(t) - 7] 2 dt (6b)
y T 0

where

T = T for periodic vibration
P

T -* _ for random vibr; .tion.

These three measures of amplitude are related as follows:

y2 = _ 2 + (7) 2 . . (7)
Y

Hence, if the mean value of the vibration is zero (_ = 0), which is often the

case in actual practice, the mean square value and variance will be equal
(_ = _2 ).

Y

Mean square or rms vibration level measurements give only a

rudimentary description of the vibration amplitude. For most engineering

applications, a more detailed description of the vibration is required. Such

detailed descriptions for periodic and random vibration data will now be
discussed.

. PERIODIC VIBRA TION DA TA

As noted in Paragraph A. of this section, a periodic vibration response

can be completely described by a Fourier series which gives the amplitude,
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frequency, andphaseof "allharmonic componentsof the vibration. However,
in actual practicc, the amplitudes and frequencies for the harmonic components
of a vibration responsegive a sufficient description for most engineering
applications. A lmowlcdgeof the associatedphaseangles is not often required.
The description of a periodic vibration response in terms of its harmonic
amplitudes anti frequencies is given by a discrete frequency spectrum.

A typical discrete frcqucncy spectrum is illustrated in Figure 35. Note
that eachharmonic componentappears in the frequency spectrum as a line
which has no bandwidth. The peak amplitudes of the components(Co, C1, C2,
_'tc. ) are equivalent to thc coefficients in the Fourier series for the periodic
vibration as shownin equation (3). The mean value of the vibration is defined
by the coefficient Coat zero frequency. Note that the mean square value of the
vibration is equal to the sum of the mean square values for the individual
componentsplus the square of the mean.

2. RANDOMVIBRATION DATA

If a vibration response is random in nature and assumed to be repre-

sentative of an ergodic stationary process, a reasonable detailed description

of the vibration is obtained from three important properties of random signals.

Thc first is a statistical description of the amplitude charactertistics of the

vibration, which is called.the amplitude probability density function. The

second is a statistical description of the time correlation characteristics of the

vibration, which is called the autocorrelation function. The third is a statistical

description of the frequency composition of the vibration, which is called the

power spectral density function. Furthermore, if data from two or more

vibration responses are obtained simultaneously, additional information is

available from several joint properties. These include joint amplitude

probability density functions, cross-correlation functions, cross-power

spectral density functions, and coherence functions. These various descriptive

properties will now be discussed.

ao Amplitude Probability Density Function

Given a stationary random vibration record y(t) of length T seconds,

the first-order amplitude probability density function p(y) is as follows:

a0

lim lim 1

P(Y) = T--co Ay--'0 T(Ay) _ ti (Y'Y +Ay) . (8)
i=1

91



_-- C o

D

y2=
I

1C2
2 1

I,M
C3

I--

Q,,
=E
,,¢

C o

0 fl

y2 = C 2

¢o

'2+m C
2

i,=1

a)

Oy -

i=1

Cl

C3

C2

C4

f2 f3 f4 fs
; f

FREQUENCY

Figure 35. Typical discrete frequency spectrum.

The quantity t.(y,y + Ay) is the time spent by the amplitude within the narrow
1

amplitude interval between y and y + A ) during the ith entry into the interval.

A typical probability density plot [p (y) versus y] is illustrated in

Figure 36. The area under the probability density plot between an), two

amplitudes Yl and y2 is equal to the probability of the vibration response
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having an amplitude within that range at any given time. Obviously, the total

area under the plot is equal to unity since the probability of the vibration having

any amplitude must be one. In other words, it is certain that the vibration

response will have some amplitude between plus or minus infinity. Note that

the mean value, mean square value, and variance for the vibration arc related

to the probability density function as follows.

CO

= f y p(y) dy (9a)
--CO

CO

72 = f y2p(y) dy (91))
--CO

¢fl

a2 = f (y_y)2 p(y) dy =_2- (_)2 • (9c)
Y _CO

b. Autocorrelation Function

Given a stationary random vibration record y(t) of length T seconds,

the autocorrelation function R (-r) is as follows:
Y

T

lim 1 .f y(t) y(t +T) (it (10)
Ry(T)= T--CO _

0

The quantity 1- is the time difference in seconds, which is often called the lag
time. Note that the autocorrelation function is a real-valued even function

which may be either positive or negative.

A typical autocorrelation plot Ry(_') versus z is illustrated in

Figure 37. The autocorrelation function for a vibration response indicates

the relative dependence of the vibration amplitude at any instant on the vibration

amplitude that had occurred _" seconds before. The maximum value of the

autocorrelation function occurs when the lag time is zero. Note that the mean

value, mean square value, and variance for the vibration are related to the
autocorrelation function as follows:
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c. Power Spectral Density Function

Given a stationar3' random vibration record y(t) of length T seconds,

the power spectral density function G (f) is as follows:
Y

T
lim lim 1

Gy(f) = T---c_ Af--0 T(Af) f y_f (t) dt . (12)
0

2 is the square of the amplitudes within the narrow frequencyThe quantity YA f

interval between f and f + A f. Note that the power spectral density, function is

a real valued function that is always positive.

A typical power spectrum [G ,(f) versus f] is illustrated in Figure 38.
Y

The area under the power spectrum plot between any two frequencies fl and f,

is equal to the mean square value of the vibration response within that fre-

quency range. The total area under the plot is equal to the total mean square

value of the vibration response. If the vibration response has a non-zero

mean value (a dc component), this will appear in the power spectrum as a

delta function at zero frequency. The area under the delta function is equal to

the square of the mean value. Note that the existence of a delta function at a

frequency other than zero would represent a sine wave at that frequency.

Itis important to mention thatthe power spectral density function for

a stationary random signal is the Fourier transform of the autocorrelation

function. Hence, a power spectrum contains the same basic information as an

autocorrelation plot. Furthermore, the power spectrum presents the infor-

mation in a frequency format which is more convenient for most engineering

applications. However, there are special situationswhere an autocorrelation

plot is more useful than a power spectrum. An example is the problem of

detecting periodic components in an otherwise random vibration response.

These matters are discussed in greater depth in Section IX.

d. Joint Amplitude Probability Density Function

Given two stationary random vibration records, x(t) and y(t), each of

length T seconds, the joint amplitude probability density function p(x,y) is as
follows:

CO

lim lim 1
p(x,y) :T._.co Ax'-O T(Ax) (Ay) Z t i (x, x+Ax;y, y+Ay)

i=1
Ay--0

(i3)
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Figure 38. Typical power spectrum.

The quantity t i (x, x+Ax;y, y + Ay) is the time spent by the amplitudes

x(t) and y(t) when they are simultaneously within the narrow amplitude inter-

vals between x and x -- Ax, and y and y + Ay, respectively, during the ith

simultaneous entz.w into the intervals.

A typical joint probability density plot[p (x, y) versus x and y ] is

illustrated in Figure 39. Note that the plot has three dimensions. The volume

under the joint probability density plot bounded by the amplitudes xl, x_, Yl,

and ya is equal to the probability that ×(t) and y(t) will simultaneously have

amplitudes within those ranges at any given time. Obviously, the total volume

under the plot is equal to unity since the probability of the two vibration res-

ponses simultaneously having any amplitudes must be one.
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Figure 39. Typical joint probability density plot.

e. C ross-Correlation Function

Given two stationary random vibration records, x(t) and y(t), each

of length T seconds, the cross-correlation function Rxy(r ) is as follows:
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T

Rxv(r) = T--mlim 1T './ x(t) y(t -,- r) (It . (14)

0

"Flat, quantity r is the time difference in seconds, which is often called the lag

time. Note that the cross-coruelatiotl function is ,'cal value(I bul not c\'cn, :,ml

may be either positive or negative.

A tspical cross-correlation i)lot [Ii (r)versus rl is illustrate(I ill
XV

Figure 40. The value of the cross-correl:ttion function for tw() vibrati()n ,'cs-

ponses indicates the relative dependence of the amplitude of one vibration

response at any instant of time on the amplitude of the othe," vib,'ati()n rcsl)(mse

that ha(I OUCUFFCd T SCC()IXIS before. 111actual i)r:,cticc, ('l'()SS-('()l'l'('ltl[i()ll

functions have wide applications to the cvaltultion ol. line:it st,'uctur',ll tFansfcr

charactet'istics. Furthermore, cross-correlation functions furnish a p()wt, l'-

ful tool for localizing vibration sources by determining time del:,vs and struct-

ural transmission paths. These matters arc (liscussc(I in mo,'c (let:,i] in

Section 7. (; of Reference 20.

f* C ross-Power Spectral Densit}' Funct ion

Given two stationary random vibration records, x(t) andy(t), each of

length T seconds, the cross-power spectral density function Gxv(f) is as
follows:

(; (f)=c (t) (la)
xy xy x?,

The cross-power spectral density function is a complex-valued function with a

real part C (f) callc(I the co-spot:tuna, and imagil).arv l)art Qxv(l) callc(I
XV

the quadsl)ectFum. The co-spectrum and (lUttdSl)ectrum arc given by

(f) = 1i m 1im 1
xy" " T--m Af--0 T(Af) ./'xAf(t) YAf (t) (It . (15:,)

C

0

T_

lirn lim I J XAf(t) yAf(t) (It. (151))
Qxy(f)=T--_ Af--0 T(Ar) 0

99



Rxy ('rl

v

-1"

,.=

m

xy

LAG TIME

D T

Figure 40. Typical cross correlation plot.

The quantities xAf(t ) and yAf(t) are the amplitudes within the narrow fre-

quency interval between f and f + A f. The symbol ( VVV ) in equation (15b)
means that x(t) is 90 degrees out of phase with y(t). Note that both the

co-spectrum and quadspectrum may have either positive or negative values.

It is usually more desirable to express the cross-power spectral density

function as a vector quantity with a magnitude and phase angle, rather than a

complex number as in equation (15). In vector notation, the cross-power

spectral density function Gxy(f ) is given by
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XV
c

(r)

where the magnitude tc'rm i(;
NV

as l'o|hm's:
(f)! and the associated I)hase angle o

(1(;)

(; (r)=Jc:'xv(r) (_xycr) (l(;:t)

-(_ (t)
X\

o (r) = arc t:tn
xv {-'x\(L)

( 1(,,'b)

.\ typical crossII)()wer sl)ectrum [G (f) \errors fl is illustr:ttetl in
XV

Figure 41. Cr()SS-l)()wev spectral (lensit3 luncti()ns have wide :tl)l)lic:tti(ms to
the measurement :m(I ev:tlu:ttion of structur:tl transfer ('h:tracteristics. The

(letails ot' such application are bex't)n(I the scope ()f this section, l[()wevel',

scver:tl iml)ort:tnt :tssociations involxin,sg. the c'rt)ss-i)()_vc'r Sl)t't'tl'Ulll |'()1" sit'tit'-

rural inl)ut-output relationships \viii be notc([.

Consider :t structure (or an\ other physical system) xxitl_ :t line:tv fre-

quency response function ofll(f). Note that if(f) is a COml)lex-x'alued tuncti(m.

Let the input excitation be x(t) and the outlmt resl)onse be y(t). The folh)wing

L'orm tdas appl3 :

Gxy(l" ) = if(f) Gx(f ) (177,)

c: (r).. = lt-(f) c;x(t) (]:b)

(_; f) ca (r)
H(0= xv( _ v (17_.)

Ox(t) C;\x( 0

ltere, ll'(f) is the complex c'on.iugate ofil(f), Gx(f) is the i)(mer spectrum

of the excitationx(t), andG (f) is the poxver spectrum of the response \(t).
.v

[t is important to note that Gxv(f) ;_ G (1).VX
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J Gxv (f) J 0 x v (f) Gxy(f) = [ Gxylf) J eJOx y(f)

..=,

==:
r_

360
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<

180 I _ f [G_.cf_J .....__.

,,.f

FREQUENCY

Figure 41. Typical cross-power spectrum.

It was previously mentioned in this section that the power spectral

density function and the autocorrelation function for the stationary vibration

response are Fourier transform pairs. It should now be noted that the cross-

powcr spectral density function and the cross-correlation function for two

stationary vibration responses are also Fourier transform pairs. Hence, both

ffmctions contain the same basic information. In general, the time format of

the cross-correlation function is more convenient for investigations of
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structural transmission paths and time delay,s while the frequency format of

the cross-power spectrum _s more convenient for evaluating structural trans-

[er characteristics.

Coherence Ftmetion

Given two stationa_v random vibration records, x(t) and y(t), the co-

herence [unction cob(f) is as follows:

I 2
(oh(r) = (;xT(r) (;'vx(0 - GxY(t)a (1_)

Gx(r) (;y(i) Gx(r) Gy(r) "

llcre G (t') andG,(t) are the power spectra ofx(t) and v(t) respectively,
x 3 ' '

and G (f) and Gvx(f ) are the cross-power spectra between x(t) and v(t).xy .,

If tile two vibration responses are coml)letcly uncorrelated (tmcohcrent),

the coherence function will equal zero. If the two vibration responses :trc cor-

related in a linear mamacr, the coherence ftmction will cqu:tl unity, llcnce,

if x(t) represents the input excitation to a structure and y(t) represents the

outl)ut response, the coherence ftmction is a measure of the lincaritv of the

structure. Nonlinearities will produce a coherence tkmction for the inl)ut_)utput

relationships which is less than tmit,v. Additive noise in tile measurements will

also cause the coherence function to be less than tmity.

C. General Techniques for Periodic Data Reduction

The basic analog techniques employed 193'MSFC for l)eriodic vibr'ttion

date reduction and analysis are now reviewed in terms of general ftmctions.

The basic digital techniques employed for vibration data reduction and analysis

are presented in Section XII. G.

As notcd previously in this section, a periodic vibration response can b,

completely described (except for phase relationships) by a discrete frequency

spectrum which gives the amplitude and frequency of all harmonic components.

Given a sample vibration response record in the form of an analog voltage sig-

nal, a discrete frequency spectrum for the sampled data may be obtained 193"

using an electronic wave analyzer, or as it is often eallcd, a speetruna analyzer.
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There are two basic types of spectrum analyzers. The first type em-

ploys a collection of contiguous frequency bandpass filters. The filters may

be either constant bandwidth filters or constant precentage filters whose

bandwidths are proportional to their center frequencies. When a periodic

signal is applied to the bank of filters, each signal passes those frequencies

lying within its pass band and excludes all others. The output amplitudes from
the filters are then detected and recorded simultaneously as a function of time.

The instantaneous output from the filters may also be recorded directly, if so

desired. Hence, the spectrum of the applied signal is broken up into as many

intervals as there are filters in the bank. This multiple filter type analyzer is

sometimes called a real time spectrum analyzer because its operation is

substantially instantaneous. This feature constitutes its primary advantage.

A secondary advantage is that phase information can be retained if proper cal-

ibration procedures are employed. The primary disadvantage of a multiple

filter type analyzer is cost. If high resolution is to be obtained, a large num-

ber of expensive filters and amplitude detectors must be incorporated in the

analyzer. A functional block diagram for a multiple filter type spectrum

analyzer is shown in Figure 42.

The second type of spectrum analyzer employs a single narrow frequency

bandpass filter. The signal is moved in frequency past the fixed narrow band-

pass filter by application of the heterodyne principle. The output amplitude
from the filter is detected and recorded as a function of frequency, giving the

spectrum for the applied signal. The primary advantage of the single filter

type spectrum analyzer is high resolution. Since only a single fixed filter

is used, its characteristics can be optimized without adding appreciably to the

cost of the analyzer. The primary disadvantage of this single filter type

analyzer is that the time required to perform an analysis is relatively long since

the entire frequency range of the signal is investigated with only one narrow

bandpass filter. It should be noted that single filter spectrum analyzers are

usually equipped with several filter selections having different bandwidths to

permit flexibility in choosing the resolution desired for a given analysis. A

functional block diagram for a single filter type spectrum analyzer is shown in

Figure 43.

For either type of spectrum analyzer, the output amplitude detector

consists of circuits which compute one or more of three different amplitude

functions. These are the peak amplitude, the rectified average amplitude,

and/or the mean square amplitude. If the resolution for a given periodic signal

analysis is sufficiently sharp to identify each individual frequency component

of the signal, the amplitude detection circuit employed is of no direct concern

since the outputs from the filter(s) will always be sine waves. The peak,

average, and mean square amplitudes for sine waves have fixed relationships

to one another, as follows:
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instantaneous amplitude = C sin _z t

peak amplitude = C

rectified average amplitude = 0. 636 C (19)

Mean square amplitude = 0.5 C 2

root mean square (rms) amplitude = 0.707 C .

Hence, any one of the three detection circuits may be used and read out in

terms of any other amplitude function desired by simply calibrating the readout

scale in an appropriate manner. For example, the peak value of the filtered

signal may be _:Jtected and read out as an rms amplitude by noting that the rms

amplitude is equal to 0. 707 times the peak amplitude. It is important to

emphasize that these relationships apply only when the analysis resolution is

sufficiently sharp to isolate individual frequency components. The relationships
in equation (19) do not apply to the sum of two or more sine waves.

The practical considerations associated with the analysis of periodic

signals are reviewed below. All relationships stated are taken from Reference
20.

I. ANALYS_ ACCURACY

If the various limitations noted in paragraphs 2., 3., and 4. below are

observed, the only errors in a spectrum analysis of periodic data are the basic

measurement errors inherent in the spectrum analyzer design capabilities and
calibration techniques. There are no intrinsic statistical uncertainties or

sampling errors associated with the proper reduction and analysis of periodic
vibration data.

2. RESOLUTION

The frequency spectrum for a periodic signal is theoretically a discrete

line spectrum where each component is a delta function with no bandwidth.

However, a spectrum analyzer will display each component as a peak with an

apparent bandwidth, which of course will be the bandwidth of the spectrum

analyzer filter. Thus, the exact frequency of the signal components will be

more accurately defined as the bandwidth of the analyzer filter is made nar-

rower. The accuracy with which the frequencies of individual components

are identified is generally referred to as the resolution of the analysis.
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It wotfld appear that the best method of analysis would be to use the

narrowest possible bandpass filter. However, for the multiple filter type

spectrum analyzer, the required number of filters and the associated cost are

inversely proportional to tile bandwidth of the filters. For the single filter

type spectrum mmlyzer, the required analysis time is inversely proportional

to the bandwidth of the filter, as is discussed later. It is important to note,

however, that the resolution of any given spectrum analysis should always be

sufficient to distinguish between adjacent frequency components. In other words,

the analyzer filter bandwidth should always be narrower than the frequency

interval between the components of the signal being analyzed. Thus, the

general criteria for minimum permissible resolution is

B < (1/Tp) (20)

where B is the analyzer filter bandwidth in cps and T is the period of the
vibration data in seconds. P

An illustration of a properly resolved spectrum analysis is presented

in Figure 44. In this example, T = 1/50 second, so the maximum permissible
P

bandwidth for acceptable resolution would be B = 50 Hz. However, the actual

bandwidth used was B = 2 Hz resulting in a very precise resolution.

3. SAMPLE RECORD LENGTH

Theoretically, the record length required to perform a spectrum analy-

sis on the sampled periodic vibration data is only T seconds long (the length
P

of one vibration period). However, for certain practical reasons, it is de-

sirable that the sample record be very much longer than one period. Multiple

filter analyzers are normally employed only when relatively long sample
records are involved. However, single filter analyzers are often used to

analyze relatively short records.

Analysis of a relatively short sample record with a single filter type

spectrum analyzer is usually accomplished by making a continuous loop from

the sample record so that the data signal may be continuously applied to the

analyzer. The formation of the loop produces, in effect, a fictitious funda-

mental period for the data. Unless the record length is an exact even multiple

of one period Tp, the loop will tend to introduce fictitious frequency components

into the analysis. However, these effects become insignificant if the record

leng'th is, say, 10 times longer than the period of the vibration data. For
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example, assume a periodic signal with a fundamental frequency of 25 Hz is

to bc analyzed. The length of the sample record should be T > 10 T = (1.4
second. P

4. AVE RAGING TI.ME

The peak, average, and/or mean square amplitude detectors incorporated

in the spectrum analyzer compute the desired amplitude function by smoothing

or time averaging the instantaneous output of an appropriate rectifier circuit

(RC). For example, the average amplitude of a signal component is usually
measured b_, a simple ac voltmeter circuit where the component is rectified,

and the instantaneous rectified amplitude is averaged by smoothing with an

equivalent low-pass RC filter. The equivalent RC time constant of the averag-

ing filter should be longer than the period of the vibration data being analyzed.

Thus, a general criteria for the minimum time constant of the averaging filter
is

K > T (21)
P

where K is the equivalent RC time in seconds.

For example, assume a periodic signal with a fundamental frequency

of 25 Hz is to be analyzed. The minimum time constant for the averaging filter
is K >T = 0.04 second.

P

5. SCAN RATE AND ANALYSIS TIME

For the multiple filter type spectrum analyzer, the frequency compon-

ents of the applied signal are concurrently measured, so the analysis time

is substantially instantaneous. However, for the single filter type spectrum

analyzer, the frequency components of the applied signal must be individually

measured by scanning through the entire frequency range of interest. If the

scan is too fast, one of two difficulties may occur.

a. The narrow bandpass filter of the spectrum analyzer will not

fully respond to the individual frequency components of the signal.

b. The amplitude detector averaging filter will not fully respond to

abe individual frequency components of the signal.

The response time for narrow bandpass filters is a function of the

exact filter characteristics, but, in general, will be less than (l/B) seconds
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where B is the bandwidthof the filter in Hz. Thus, a general criteria for the
maximum analysis scan rate basedon the analyzer filter response is

scan rate < B2Hz/sec (22a)

The response time for equivalent RC low-pass averaging filters is such
that about 98 percent of full response is reached in a time equal to four time

constants (4K). Thus, a general criteria for the maximum analysis scan

rate based on the averaging filter response is

B
scan rate < --_ Hz/sec (22b)

If the total frequency range for the analysis is F Hz, the minimum
analysis time is

analysis time

F
B"-_ seconds (23a)

>
4KF
"-B-- seconds (23b)

For example, assume a periodic signal is to be analyzed with a filter band-

width of B = 10 Hz and an averaging time constant of K = 0.1 second, over a

frequency range from near 0 to 2000 Hz (F = 2000 Hz). The maximum scan

rate is 25 Hz/sec, since equation (22b) produces the smaller value. Hence,

the minimum analysis time is 80 seconds, since equation (23b) produces the
larger value.

D. General Techniques for Random Data Reduction

The basic analog techniques employed by MSFC for random vibration

data reduction and analysis are now reviewed in terms of general functions.

The basic digital techniques employed for vibration data reduction and analysis
are presented in Section XII. F.

As noted Paragraph B. 2 of this section, a stationary random vibration

response can be described in the amplitude domain by a probability density

function as given in equation (8), in the time domain by an autocorrelation
function as given in equation (10), and in the frequency domain by a power

spectral density function as given in equation (12). If two or more vibration

response records are available, additional information may be obtained from
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a joint probability density function as given in equation (13), a cross-correlation
function as givcn in equation (14), and a cross-power spectral density function
as given in equation (15).

The true measurementof the above-mentionedproperties requires the

determination of a limit as the record length T approaches infinity. Further-

more, the true measurement of probability and power spectral density functions

also requires the determination of a limit as either an amplitude interval Ay

or a frequency interval A f approaches zero. Clearly, the determination of

these limits is physically impossible. Thus, no real instrument can actually

measure the true properties of a random vibration. However, measurements

can be performed which produce meaningful estimates for the desired proper-
ties. These measurement techniques are now discussed.

1. AMPLITUDE PROBABILITY DENSITY ANALYSIS

Given a sample vibration response record in the form of an analog

voltage signal y(t) with a finite length of T seconds, the amplitude probability

density function for the vibration response may be estimated from equation

(8) as follows:

_(y) __--_} . (24)

Here, _¢¢ is the average portion of the time spent by the signal y(t) within a

narrow amplitude interval having a gate width of W volts and a center amplitude
^

of y volts. The hat (^) over p(y) means that the measured quantity is only

an estimate of p(y), since the record length T and the gate width W are finite.

The amplitude probability density function is estimated by the following opera-

tions.

a. Amplitude filtering of the signal by a narrow amplitude gate having

a gate width of W volts.

b. Measurement of the total time spent by the signal within the gate.

c. Division of the time spent within the gate by the total sampling

time, to obtain the average portion of time spent by the signal within the gate.

d. Division of the average portion of the time spent within the gate by

the gate width W.
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As the center amplitude of the gate is moved, a plot of the probability density
function versus amplitude is obtained.

The aboveoperations are accomplishedby ananalogamplitude proba-
bility density analyzer, which will be called anAPD analyzer for simplicity.
In general, an APD analyzer measuresthe time spentby a signal within some
narrow amplitude interval by use of a voltage gate (narrow bandvoltage dis-
criminator) followed by a clock circuit. Whenthe input signal amplitude from
the sample record falls within the gate, the clock circuit operates. For all
other signal amplitudes, the clock circuit doesnot operate. The clock circuit
output is averagedover the entire time of observation T to obtain the averagea
portion of time spent by the signal amplitude within the narrow gate. The
required division by the gate width W may be obtainedby a proper scale cali-
bration.

There are two basic types of APD analyzers. The first type employs
a collection of contiguousvoltage gateswith equal gatewidths. The multiple
gate type analyzer measures the probability density within eachgate simultane-
ously to give a plot of probability density versus amplitude. The secondtype
employs a single gatewhosecenter voltage is variable relative to the voltage
of the signal. The single gate type analyzer producesa plot of probability
density versus amplitude by sweeping (or stepping) the single gate through the

entire range of voltage amplitudes of interest. A functional block diagram for

a single gate APD analyzer is shown in Figure 45.

The practical considerations associated with amplitude probability

density analysis are reviewed below. All relationships stated are taken from

Reference 20. Many of the relationships are also studied experimentally in
Reference 21.

a. Analysis Accuracy

The analysis of random vibration data involves basic measurement

errors due to the analysis equipment design capabilities and calibration tech-

niques, just as is true for the analysis of periodic vibration data. However,

the analysis of random data also involves an additional error which is called

the statistical uncertainty or probable sampling error. As was mentioned

earlier, the data measured from sample records of finite length constitute

only statistical estimates of the true prouerties of the sampled vibration re-

sponse. The expected deviation of the estimated properties from the actual

properties of the random vibration represents the statistical uncertainties

associated with the measurements. Thus uncertainty may be defined in terms

of a normalized standard deviation for the sampling distribution, which is often

called the standard error e.
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For the specific case of amplitude probability density analysis, the

standard error associated with a measured estimate p(y) is as follows:

0.20 (25)
e _ j (y)WBT

Here, _(y) is the measured probability density, W is the amplitude gate width

in relative amplitude units, B is the bandwidth of the signal being investigated,

and T is the length of the analyzed sample record in seconds.

Several important features of equation (25) should be noted. First,

this expression for the standard error is a simplification of more complicated

relationships developed theoretically and empirically in Section 14 of Reference

21. However, equation (25) is an acceptable approximation for most applica-

tions. Second, the standard error e is a function of the actual probability

density estimate that is measured. Thus, for any given gate width, bandwidth,

and record length, the uncertainty of the estimate varies with the amplitude

being analyzed. Third, the bandwidth B assumes that the vibration signal has

a power spectrum which is uniform between two frequencies B Hz apart, and

zero elsewhere. In other words, the signal is assumed to be white noise which

has been filtered with an ideal rectangular bandpass filter having a bandwidth
B.

The meaning of the standard error e is as follows. Assume a stationary

random vibration response with a true probability density function of p(y) is

repeatedly sampled at different times, and an estimate p(y) is measured for

each sample. For about 68 percent of the estimates obtained, the difference

between the estimate p(y) and the true value p(y) will be less than ± e _(y).

Stated in another way, if an estimate p(y) is measured, one may say with about

68 percent confidence that the true value p(y) is within the range (1+ e)p(y).

A plot of the standard error e versus the WBT product for various amplitude

probability density estimates is presented in Figure 46.

For example, assume an amplitude probability density function is

measured from a sample record that is T = 0 second long using an APD anal-

yzer with a gate width of W = 0.1 volt. Further assume the bandwidth of

the signal is B = 100 Hz. If a probability density of p = 0.16 were measured at

the amplitude y = 1.5 volt (Yrms 1 volt), the standard error for the estimate
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would be e = 0.05. Hence, one could say with 68 percent confidence that the

true probability density at that amplitude is within + 5 percent of the measured
value, or between 0.152 and 0.168.

b. Resolution

Equation (25) shows that the statistical uncertainty of probability density

estimates is inversely proportional to the width of the amplitude gate. One

might then conclude that improved estimation accuracy can easily be obtained

by simply increasing the gate width. However, increasing the gate width re-

duces the resolution of the analysis; that is, it reduces the ability of the anal-

ysis to properly define peaks in the probability density plot. The selection of

the analyzer gate width is always a compromise between estimation uncertainty

and resolution. A general criterion for proper resolution is a gate width that

is less than one-fourth of the rms signal amplitude; that is,

1
W < _" Yrms (26)

where W is the analyzer gate width in volts and y is the root mean square
value of the signal being analyzed in volts, rms

c. Sample Record Length

As seen from equation (25), the sample record length T limits the

statistical accuracy attainable in an amplitude probability density analysis.

The longer the record length, the lower the uncertainty in the resulting proba-

bility density estimates. If the statistical uncertainty of a probability density

analysis is to be limited to a given desired amount, these matters must be

considered before the data are gathered to assure that sample records are

sufficiently long.

d. Averaging Time

An APD analyzer computes the portion of time spent by the signal

amplitude within the gate by averaging the output of the gate clock circuit.

The averaging may be accomplished by true linear integration, called true

averaging, or by continuous smoothing with an equivalent low-pass RC

filter, called RC averaging. True averaging produces a single probability

density estimate after a specific averaging time T while RC averaging
a

produces a continuous probability density estimate. If the RC time constant
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of the averaging filter is K and the record length T is long compared to K,

the continuous estimate at any instant of time has an uncertainty equivalent to

an estimate obtained by true averaging over a time interval of T -- 2K.
a

For the case of true averaging, it is clear that the averaging time T
a

should be as long as the record length T if the uncertainty in the resulting

estimates is to be kept at a minimum. In other words, all of the information

available from the sample record should be employed for the probability

density measurement. If T is less than T, the uncertainty will be increased
a

since T will replace T in equation (25). If T is greater than T, as it could
a a

be when the sample record is formed into a continuous loop for analysis, the

uncertainty will not be decreased from the value given in equation (25) since

one is simply looking at the same information more than once.

For the case of RC averaging, minimum uncertainty can be achieved

only by making the time constant K very long. However, a long averaging

time constant reduces the scan rate and greatly increases the total analysis

time, as is discussed in Paragraph D. 1. a. of this section. A reasonable
compromise is to use an averaging time constant that is at least one-half

the record length T.

Thus, the general criteria for the ideal averaging time for a probability

density analysis are as follows:

for true averaging, T = T (27a)
a

for RC averaging, 2K _ T . (27b)

Here, T is the true averaging (integration) time in seconds, and K is the
a

time constant of the equivalent RC averaging filter in seconds.

e. Scan Rate and Analysis Time

For the multiple gate type APD analyzer, the probabilitydensity is

concurrently measured over all amplitudes of interest, so the analysis time

is equal to the record length T. However, for the single gate type APD

analyzer, the probabilitydensity at all amplitudes of interestmust be mea-

sured by scanning through the desired amplitude range. Ifthe scan is too

fast, allthe information availa_!e at a given amplitude willnot be viewed by

the analyzer gate over the entire record length, and the statisticaluncertainty

of the resultingestimate will be increased. IfRC averaging is used, the scan

rate is further limited because time must be allowed for the RC averaging filter
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to respond to abrupt changes in the probabilitydensity function. The limitations

imposed upon the scan rate by these considerations are as follows:

W
for true averaging, scan rate < _ (28a)

a

W
for RC averaging, scan rate < ix4_ " (28b)

Here, T is the averaging time in seconds, K is the RC time constant in seconds,
a

and W is the gate width in volts. Hence, scan rate has the units of volts per
second.

If the total amplitude range for the APD analysis is A volts, the mini-

mum analysis time is as follows:

for true averaging, analysis time

TA

a (29a)> W

for RC averaging, analysis time
4KA

> _ • (29b)

For example, assume the amplitude probability density function for a

random vibration response is to be estimated from a sample record of length

T = 10 seconds over an amplitude range from minus four volts to plus four

volts (A = 8 volts) using an APD analyzer with a gate width of W = 0.1 volt.

The rms amplitude of the signal is assumed to be 1 volt. If true averaging
is used, T = 10 seconds and the maximum scan rate is 0.01 volt/second.

a

Hence, the minimum analysis time is 800 seconds or 13.3 minutes. If RC

averaging is used, K >_-5 seconds, and the maximum scan rate is 0. 005

volt/second. Hence, the minimum analysis time is 1600 seconds, or about 27
minutes.

2. AUTOCORRELATION ANALYSIS

Given a sample vibration response record in the form of an analog

voltage signal y(t) with a finite length of T seconds, the autocorrelation func-

tion for the vibration response may be estimated from equation (10) as follows:

A

R (_')= y(t) y(t + T) • (30)
Y
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Here, y(t) y(t + 7) is the average product of the instantaneous signal amplitude
^

at two different times which are r seconds apart. The hat (^) over R (T)
Y

means that the measured quantity is only an estimate of R (r), since the record
Y

length T is finite. The autocorrelation function is estimated by the following
operations:

a. Delaying the signal by a time displacement equal to _- seconds,
called the lag time.

b. Multiplying the amplitude at any instant by the amplitude that had
occurred-r seconds before.

Co

time.
Averaging the instantaneous amplitude product over the sampling

As the lag time is moved, a plot of the autocorrelation function versus lag time
is obtained.

The above operations are accomplished by an analog autocorrelation

function analyzer, which will be called an ACF analyzer for simplicity. In

general, an ACF analyzer displaces the signal in time by use of a magnetic

signal recorder with a variable lag time between the record and playback.

This can be accomplished, for example, with a magnetic drum recorder where

the location of the playback head is variable relative to the location of the record

head. The input and output of the lag time generator are then multiplied and

averaged. The lag time is variable over a range from zero to the longest

sampling times that are anticipated. Since the autocorrelation function is an

even function, it is not necessary to make measurements with negative lag

times. A functional block diagram for an ACF analyzer is shown in Figure 47.

The practical considerations associated with autocorrelation analysis

are reviewed below. All relationships stated are taken from Reference 20°

a. Analysis Accuracy

As discussed in Paragraph D. 1. a. of this section, the analysis of ran-

dom vibration data involves not only basic measurement errors, but also a

statistical uncertainty inherent in the sampling procedures. Thus, uncertainty

may be defined in terms of the standard error e for the sampling distribution.

For the specific case of autocorrelation analysis, the standard error as-
^

sociated with a measured estimate R (r) is as follows.
Y
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1
e . (:'1)

 r-B-T

Here, B is the noise bandwidth of the signal in Hz and T is the length of the

analyzed sample record in seconds. It is assumed in deriving equation (:'1)
that T < < T and that BT >- 10.

Two important features of equation (31) should be noted. First, this

expression for the standard error is a conservative approximation wClich is

accurate for lag times near zero. For large lag times, the standard error

is not explicitly defined but is somewhat less than the quantity given in equation

(31). Second, the bandwidth B is the noise bandwidth of the vibration response

signal. The determination of noise bandwidths is covered in Paragraph E. of
this section.

The general meaning and interpretation of the standard error e is

discussed in Paragraph D. 1 of this section. The specific interpretation for

autocorrelation analysis is as follows. Assume a stationary random vibration

response with a true autocorrelation function of R (T) is sampled, and an
a Y

estimate R (7) is measured from the sample. If e is reasonably small, say
Y

less than 0.30, it may be said with about 68 percent confidence that the true

value Ry(T) is within the range (1 + e)Ry(_-). A plot of the standard error e

versus the BT product is presented in Figure 48.

For example, assume an autocorrelation function is measured from a

sample record that is T = 10 seconds long. Further assume the noise band-

width of the signal is B = 100 Hz. The standard error for the resulting esti-
A

mate is e _ 0.032. Hence, if a measured estimate R (1-) at time _- = 0 were
Y

about 0.3 volt 2, it could be said with 68 percent confidence that the true auto-

correlation function for that lag time is within ± 3.2 percent of the measured
value, or between 0.29 and 0.31 volt 2.

b. Resolution

A

As seen from equation (30), the autocorrelation function R(T) must be

estimated at various different lag times _- to obtain a plot of the autocorrelation

function versus lag time. The interval between the lag times at which compu-

tations are made defines the resolution of the autocorrelation plot. Based upon

practical considerations, a general criteria for proper resolution is a lag

time interval that is less than one-fourth the reciprocal of the signal bandwidth;
that is,
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1
h < 4"_ (32)

where h is the interval between lag times in seconds and B is the bandwidth

of the signal in Hz.

The relationship in equation 8. 33 is directly appropriate for the case

when an autocorrelation function is computed at specific lag times, TI, r_
= T 1 + h, r3 -- _1 + 2h, etc. However, analog instruments often determine an

autocorrelation plot by continuous averaging while the time delay generator

makes a continuous scan through the lag time range of interest. For this case,

the relationship in equation (32) constitutes the basis for a limit on the hag

time scan rate. This limit is discussed in Paragraph e. below.

c. Sample Record Length

As seen from equation (31) the sample record length T determines the

statistical accuracy attainable in an autocorrelation analysis. The longer the

record length, the lower the uncertainty in the resulting autocorrelation esti-

mates. If the statistical uncertain_y of an autocorrelation analysis is to be
limited to a given desired amount, these matters must be considered before

the data are gathered to assure that sample records are sufficiently long.

d. Averagin_ Time

An ACF analyzer computes the mean product of the signal amplitudes

at two different times by averaging the output of the multiplier circuit. The

averaging may be accomplished by true linear integration, called true averag-

ing, or by continuous smoothing with an equivalent lowpass RC filter, called

RC averaging. True averaging produces a single autocorrelation estimate

after a specific averaging time T a while RC averaging produces a continuous
probability density estimate.

For the reasons presented in Paragraph D. 1. d. of this section, the

general criteria for the ideal averaging time for an autocorrelation analysis is

for true averaging, T = T (33a)a

for RC averaging, 2K > T (33b)
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Here, T is the true integrating time in seconds, and D is the time constant
a

of the equivalent RC averaging filter in seconds.

e. Scan Ra_e and Analysis Time

The autocorrelation function at all lag times of interest must be meas-

ured by scanning through the desired time delay range. This may be done in

discrete steps or a continuous sweep. For the case of a stepped scan, if the

scan rate is too fast, all the information available at a given lag time will not

be analyzed and the statistical uncertainty of the resulting estimate will be

increased. For the case of a continuous scan, if the scan rate is too fast, the

resolution of the resulting estimate will be reduced. If RC averaging is used,
the scan rate is further limited because time must be allowed for the RC

averaging filter to respond to abrupt changes in the autocorrelation function.

The limitations imposed upon the scan rate by these considerations are as
follows:

for true averaging, scan rate < 4BT
a

(34a)

for RC averaging, scan rate < 16 BK (34b)

Here, T is the averaging time in seconds, K is the RC time constant in
a

seconds, and B is the noise bandwidth in Hz. Hence, scan rate has the units

of seconds per second.

If the maximum lag time for the AC F analysis is T seconds where
m

is relatively small compared to the record length T, the minimum analysis
m

time is as follows:

for true averaging, analysis time > 4BT _ (35a)a m

for RC averaging, analysis time > 16 BK 1"
m

(35b)

For example, assume the autocorrelation function for a random vibration

response is to be estimated from a sample record of length T -- 10 seconds.

Further assume the vibration signal has an upper frequency limit of f = 100 Hz
U
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and that lag times of up to _ = 1 second are of interest. If true averaging ism

used, T = 10 seconds and the maximum scan rate is 0.00025 second/second.
a

Hence, the minimum analysis time is 4000 seconds or about 67 minutes. If

RC averaging is used, K > 5 seconds and the maximum scan rate is 0.000125

second/second. Hece, the minimum analysis time is 8000 seconds or about
134 minutes.

3. POWER SPECTRAL DENSITY ANALYSIS

Given a sample vibration response record in the form of an analog

voltage signal y(t) with a finite length of T seconds, the power spectral density

function for the vibration response may be estimated from equation (12) as
follows:

m

^ Y2B
G (f)= . (36)

y B

m

Here, y2B is the average of the squared instantaneous signal amplitude (mean

square value) in a narrow frequency interval having a noise bandwidth of B Hz
^

and a center frequency of f Hz. The hat (n) over G (f) means that the meas-
Y

ured quantity is only an estimate of G (f), since the record length T and the
Y

bandwidth B are finite. The power spectral density function is estimated by
the following operations:

a. Frequency filtering of the signal by a narrow bandpass filter
having a bandwidth of B Hz.

b. Squaring of the instantaneous amplitude of the filtered signal.

Ce

time.
Averaging the squared instantaneous amplitude over the sampling

d. Division of the mean square output by the bandwidth B.

As the center frequency of the bandpass filter is moved, a plot of the power

spectral density function versus frequency is obtained. This plot is often
called the power spectrum.
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l?he above operations are accomplished by an analog power spectral

density analyzer, which will be called a PSD analyzer for simplicity. It is

important to note the similarity between the PSD analyzer and a simple spec-

trum analyzer used for periodic data analysis, as discussed in Section VIII• C.

Since the division by the bandwidth B is only a matter of proper scale cali-

bration, the PSI) analyzer is nothing more than a spectrum analyzer with a

mean square amplitude detection circuit. Thus a PSD analyzer may be used

to analyze periodic vii)ration data as well as random vibration data. How-

ever, a simple spectrum analyzer may not be used to analyze random

vibration (lata unless a mean square amplitude detection circuit is available.

A peak amplitude detection circuit would obviously produce meaningless

results, since a random signal has no specific peak amplitude. An average

amplitude detection circuit would produce results that have no real analytical

meaning, although the average value of a random signal can be related to the

mean square value if the probability density function for the random signal
is known. These matters arc discussed further in Section VIII. F.

Similar to the spectrum analyzers discussed in Section VIII• C., a PSD

analyzer may be either a multiple filter type analyzer employing a bank of

contiguous filters, or a single filter type analyzer• A functional block diagram

for a single filter type PSD analyzer is shown in Figure 49.

The practical considerations associated with power spectral density

analysis are reviewed below. All relationships stated are taken from Reference

20. Many of the relationships are also studied experimentally in Reference 21.

a• Analysis Accuracy

As discussed in Paragraph D. 1.a. of this section, the analysis of

random vibration data involves not only basic measurement errors, but also

a statistical uncertainty inherent in the sampling procedures. This uncertainty

may be defined in terms of the standard error e for the sampling distribution.

For the specific case of power spectral density analysis, the standard error
A

associated with a measured estimate G (f) is as follows:
y

1 (37)e _ •

4-gg

Here, B is the bandwidth of the PSD analyzer filter in Hz, and T is the length

of the analyzed sample record in seconds.
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/

Note that the uncertainty expression for a power spectral density analy-

sis is similar to the uncertainty expression for an autocorrelation analysis, as

g:ivc_ l,: eqaatio_, (:;1). _owevcr me interpretation of the baedwidth B in the

two expressions is slightly different. For a power spectral density analysis,

B is the bandwidth for that portion of the signal spectrum within the frequency

range of the PSD analyzer bandpass filter, which is approximately equal to

the noise bandwidth of the analyzer filter for a properly resolved power spectral

density analysis. The determination of noise bandwidths for filters is dis-

cussed in Paragraph E. of this section. For the narrow bandpass filter in most

PSD anal_'zers, the noise bandwidth may be considered equivalent to the half

power point bandwidth of the filter.

The general meaning and interpretation of the standard error e is dis-

cussed in Paragraph D. 4.a. of this section. The specific interpretation for

power spectral density anal)'sis is as follows. Assume a stationary random

vibration response with a tru_ power spectral density function of G (f) is
A Y

sampled, and an estimate G (f) is measured from the sample. If e is relatively
Y

small, say less than 0.30, it may bc said with about 68 percent confidence that
e\

the true value G (f) is within the range (1 _ c) G (f). A plot of the standard
Y Y

error e versus the BT product is presented in Figure 48.

For example, assume that a power spectral density function is measured

from a sample record that is T = 10 seconds long using a PSD analyzer with a

filter bandwidth of B = I0 Hz. The standard error for the resulting estimate
^

is e _ 0. i0. Hence, if a measured estimate G (f) at a given frequency were
Y

0.3 volt2/Hz, it could be said with 6_ percent confidence that the true power

spectral density function for that frequency is within ± 10 percent of the

measured value, or between 0.27 and 0.33 volt2/Hz.

b. Resolution

Equation (37) shows that the statistical uncertainty of power spectral

density estimates is inversely proportional to the bandwidth of the analyzer

filter. One might then conclude that improved estimation accuracy can easily

be obtained by simply increasing the filter bandwidth. However, increasing

the filter bandwidth reduces the resolution of the analysis; that is, it reduces

the ability of the analysis to properly define sharp peaks in the power spec-

trum. The selection of the analyzer filter bandwidth is always a compromise

between estimation uncertainty and spectral resolution. It should be further
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noted that if there are sharp peaks within the filter bandwidth, the resulting

uncertainty will actually be greater than predicted by equation (37). Hence,

the emphasis should be placed upon an analyzer bandwidth which will afford

proper resolution. A reasonable criteria for proper resolution is a filter

bandwidth that is one-fourth the bandwidth (between half power points) of the

narrowest peak in the power spectrum; that is,

1
B < "_ (f_- fl) (38)

where B is the analyzer filter bandwidth in cps and (f2 - fl) is the bandwidth

between the half power points of a power spectral density peak in Hz.

c. Sample Record Length

As equation (37) shows, the sample record length T limits the statisti-

cal accuracy attainable in a power spectral density analysis. The longer the

record length, the lower the uncertainty in the resulting power spectral density

estimates. If the statistical uncertainty of a power spectral density analysis

is to be limited to a given desired amount, these matters must be considered

before the data are gathered to assure that sample records arc sufficiently long.

d. Averaging Time

The mean square amplitude detector incorporated in the PSD analyzer

computes a mean square value by averaging the instantaneous output of a square

law rectifier. The averaging may be accomplished either by true linear inte-

gration, called true averaging, or by continuous smoothing with an equivalent

low-pass RC filter, called RC averaging. PSD analyzers are usually equipped

with both types of averaging circuits. True averaging produces a single power

spectral density estimate after a specific averaging time interval T a, while

RC averaging produces a continuous power spectral density estimate.

For the reasons presented earlier, the general criterion for the ideal

averaging time for a power spectral density analysis is

for true averaging, T a = T (39a)

for RC averaging, 2K <--T • (39b)

Here, T is the true integrating time in seconds, and K is the time constant
a

of the equivalent RC averaging filter in seconds.
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e. Scan Rate and Analysis Time

For the multiple filter type PSD analyzer, the power spectral density

is concurrently measured over all frequencies of interest, so the analysis time

is equal to the record length T. However, for the single filter type analyzer,

the power spectral density at all frequencies of interest must be measured by

scanning through the desired frequency range. If the scan is too fast, one of

three difficulties may occur_

1. The statistical uncertainty of the resulting estimate will be in-

creased because all the information available at, a given frequency will not be

viewed by the analyzer filter over the entire record length.

2. The narrow bandpass filter of the PSD analyzer will not fully

respond to a sharp peak in the power spectrum of the signal.

3. If RC averaging is used by the amplitude detector, the averaging

filter will not fully respond to sharp peaks in the power spectrum of the signal.

The limitations imposed upon the scan rate by the above mentioned consider-

ations are as follow:

for true averaging, scan rate <

(4oa)
T

a

B-- (4Oh)
8

for RC averaging, scan rate <

B___ (40c)
4K

B 2
-- • (40d)

8

Here, T is the averaging time in seconds, K is the RC time constant in
a

seconds, and B is the bandwidth of the PSD analyzer in Hz. Hence, scan rate

has the units of Hz per second.

If the total frequency range for the PSD analysis is F Hz, the minimum

analysis time is as follows:
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for true averaging, analysis time >

FT

(41a)
B

8F

(41b)

for RC averaging, analysis time >

4FK
"E- (41c)

8F
B--F- (41d)

For example, assume the power spectral density function for a random

vibration response is to be estimated from a sample record of length T = 10

seconds over a frequency range from near 0 to 2000 Hz (F = 2000 Hz) using a

PSD analyzer filter bandwidth of B = 10 Hz. if true averaging is used, T ffi 10
a

seconds and the maximum scan rate is 1 Hz/second, since equation (40a) pro-
duces the smaller value. Hence, the minimum analysis time is 2000 seconds

or about 33 minutes, since equation (41a) produces the larger value. If RC

averaging is used, K > 5 secomls and the maximum scan rate is 0.5 Hz/second,

since equation (40c) produces the smaller value. Hence, the minimum analy-

sis time is 4000 seconds or about one hour and seven minutes, since equation

(41c) produces the larger value.

4. JOINT AMPLITUDE PROBABILITY DENSITY ANALYSIS

Given two sample vibration response records in the form of analog

voltage signals x(t) and y(t), each with a finite length of T seconds, the joint

amplitude probability density function for the two vibration responses may be

estimated from equation (13) as follows:

tw ; tW
A

x y . (42)p(x,y) = W W
x y

Here, tw ; tw is the average time spent by the signals x(t) and y(t) while
x y

they are simultaneously within the narrow amplitude intervals having gate widths
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of W and W volts and center amplitudes of x and y volts, respectively. The
x y

A
hat (^) over p(x, y) means that the measured quantity is only an estimate of

p(x, y), since the record length T and the gate widths W and W are finite.
x y

In words, the joint amplitude probability density function is estimated by the

following operations:

a. Individual amplitude filtering of the two signals x(t) and y(t) by

narrow amplitude gates having widths of W and W volts, respectively.
x y

b. Measurement of the total joint time spent by the two signals while

they are simultaneously within the gates.

c. Division of the total joint time spent within the gates by the total

sampling time, to obtain the average portion of time spent by the two signals

while they are simultaneously within the gates. •

d. Division of the average portion of time spent within the gate_ by

the product of the gate widths W W .
x y

As the center amplitude of each gate is moved, a three dimensional plot of the

joint probability density function versus amplitudes x and y is obtained.

The above operations are accomplished by an analog joint amplitude:

probability density analyzer, which will be called a joint APD analyzer for

simplicity. In general, a joint APD analyzer consists of two simple APD

analyzers as discussed in Paragraph D., except the voltage gates in the two

analyzers are followed by a single common clock circuit. When the input sig-

nal amplitude from one sample record falls within the first analyzer gate while

the input signal amplitude from a second sample record simultaneously falls

within the second analyzer gate, the clock circuit operates. For all other

amplitude combinations, the clock circuit does not operate. As for the simple

APD analyzer, the joint APD analyzer may incorporate either multiple pairs

of gates or a single pair of gates. A functional block diagram for a single gate

pair type joint APD analyzer is shown in Figure 50.

The practical considerations associated with joint amplitude probability

density analysis are reviewed below. All relationships stated are based upon
material in Reference 20.
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a. Analysis Accuracy

The measurement of joint amplitude probability density functions in-

volves a statistical uncertainty just as does the measurement of simple ampli-

tude probability, density functions discussed in Paragraph D. 1. a. of this

section. Howcvcr, this uncertainty in terms of the standard error e has not

bccn completely evaluated for the case of joint probability density functions.

It can only bc said that the standard error will be much greater for joint proba-

bility density measurement than for simple probability density measurements,

given similar signal bandwidths and record ler_hs.

b. Resolution

c. Sample Record LcnB1; h

d. Averaging Time

The considerations associated with these three factors are exactly the

same as for simple probability density measurements discussed in Paragraphs

D.l.a., b., andc.

e. Scan Rate and Analysis Time

The general limitations imposed upon the scan rates for joint proba-

bility density analysis are exactly the same as for simple probability density

analysis discussed in Paragraph D. 1.d. of this section. However, there are

two signals whose amplitude ranges must be scanned for a joint probability

density analysis. In effect, this means that the gate for signal x(t) must be

scanned through the entire amplitude range of interest for x(t), with the gate

for signal y(t) fixed at each of the numerous positions required to cover the

entire amplitude range of interest for y(t). If the tots/amplitude range of

interest for x(t) and y(t) is A and A volts, respectively, the minimum
x y

analysis time is as follows:

for true averaging, analysis time >

TAA
a x _,

WW
x y

for RC averaging, analysis time >

4KA A
x y

W W
x y

(43a)

(43b)
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Here, T is the averagingtime in seconds, K is the RC time constant in seconds,
a

and W and W are the gate widths in volts.
x y

For example, assume that the joint amplitude probability density function

for two random vibration responses is to be estimated from two sample records,

each of length T = 10 seconds, over an amplitude range from minus 4 volts to

plus 4 volts (A = A = 8 volts) using a joint APD analyzer with gate widths of
x y

W = W = 0.1 volt. The rms amplitude of both signals is assumed to ]_ 1 volt.
x y

If true averaging is used, T = 10 seconds and the maximum sc'm rate for A
a x

is 0.01 volt/second for each position of A . ttencc, the minimum amdysis time
Y

is 64 000 seconds or 17.8 hours. If RC averaging is used, K _ 5 seconds :md
the maximum scan rate for A is 0. 005 volt/second for each position of A .

X y

Hence, the minimum analysis time is 128 000 seconds or 35. (i hours. These

results should be compared with the example following equation (29).

5. CROSS-CORRELATION ANALYSIS

Given two sample vibraticn response records in the form of analog

voltage signals x(t) and y(t), each with a finite length of T seconds, the cross-

correlation function for the two vibration responses may be estimated from

equation (44) as follows:

T
^ 1
R ('r) = x(t) y(t + T) - "_ .f x(t) y(t + T) dt . (44)

xy 0

Here, x(t) y(t + T) is the time average cross product of the instantaneous

amplitude of the two signals when one signal is displaced in time from the
A

other by V seconds. The hat (^) over R (-r) means that the measured
x3'

quantity is only an estimate of Rxy(T ) , since the record length T is finite. In

words, the cross-correlation function is estimated by the following operations:

a. Delaying the signal x(t) relative to the signal y(t) by a time dis-

placement equal to "r seconds, called the lag time.

b. Multiplying the amplitude y(t) at any instant by the amplitude

x(t) that had occurred v seconds before.

k
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time.

Averaging the instantaneous amplitude product over the sampling

As the lag time is moved, a plot of the cross-correlation function versus lag
time is obtained.

The above operations are accomplished by an analog cross-correlation

function analyzer, which will be called a CCF analyzer for simplicity. In

general, a CCF analyzer is exactly the same as the ACF analyzer discussed

in Paragraph D. 2 of this section, except the direct input to the multiplier and

the input to the lag time generator are independent. A functional block diagram

for a CCF analyzer is shown in Figure 51.

The practical considerations associated with cross-correlation analysis

are reviewed below. All relationships stated are based upon material in

Reference 20.

a. Analysis Accuracy

The measurement of cross-correlation functions involves a statistical

uncertainty just as does the measurement of autocorrelation functions discussed

in Paragraph D. 2. a. of this section. For the special_ase where the two signals

being studied have the same bandwidth B, the uncertainty in terms of the

standard error e is exactly the same for cross-correlation analysis, given by

equation (31). The standard error for cross-correlation measurements has

not been completely evaluated for other cases.

b. Resolution

c. Sample Record Length

d. Averaging Time

e. Scan Rate and Analysis Time

The considerations associated with these four factors are exactly the

same as for autocorrelation measurements discussed in Paragraphs D. 2. b.,

c., d., and e. of this section.

6. CROSS-POWER SPECTRAL DENSITY ANALYSIS

Given two sample vibration response records in the form of analog

voltage signals x(t) and y(t), each with a finite length of T seconds, the cross-

power spectral density function for the two vibration responses may be estimated

from equation (15) as follows:
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^ A ,, f
GxyCf) = Cxy (f) - Jqxy() (45)

^ xBYB
Cxy(f) = B (45a)

vvv
^ xBY B

Qxy (f) B " (45b)

Here, xBY B' is the average product of the instantaneous amplitudes of the two

signals, each within a narrow frequency interval having a noise bandwidth of

B Hz and a center frequency of f Hz. The symbol (VVV) in equation (45b)

means that x(t) is 90 degrees out of phase with y(t). The hat (^) over
A

Gxy(f ) means that the measured quantity is only an estimate of GxyCf ) , since

the record length T and the bandwidth B are finite. The cross-power spectral

density function is estimated by the following operations:

a. individual frequency filtering of the two signals x(t) and y(t) by

narrow bandpass filters having similar bandwidths of B Hz and the same center

frequency at any one time.

b. Multiplying the instantaneous amplitudes of the two filtered

signals with no phase shift.

c. Multiplying the instantaneous amplitudes of the two filtered

signals with one shifted 90 degrees out of phase with the other.

d. Averaging each of the two instantaneous amplitude products over

the sampling time.

e. Division of each of the two mean products by the bandwidth B.

As the center frequency of the two bandpass filters is moved, a plot of the

real and imaginary parts of the cross-power spectral density function versus

frequency is obtained. This plot is often called the cross-power spectrum.

The above operations are accomplished by an analog cross-power

spectral density analyzer, which will be called a cross PSD analyzer for
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simplicity. In general, a cross PSD analyzer consists of two simple PSD

analyzers as discussed in Paragraph D. 1. of this section, except that multipliers
replace the squaring circuits and a 90 degree phase shift circuit is added. The

narrow bandpass filters in the two component analyzers must be well matched

to prevent unwanted phase shifts. As for the simple PSD analyzer, the cross

PSD analyzer may incorporate either multiple pairs of filters or a single pair

of filters. However, multiple filter pair type analyzers are uncommon

because of the high cost and difficulty in matching filters. A functional block

diagram for a single filter pair type cross PSD analyzer is shown in Figure 52.

The practical considerations associated with cross-power spectral den-
sity analysis are reviewed below. All relationships stated are based _pon
material in Reference 10.

a. Analysis Accuracy

The imeasurement of cross-power spectral density functions involves

a statistical uncertainty just as does the measurement of power spectral density

functions discussed in Paragraph D. 3. a. of this section. Furthermore, the

individual standard errors associated with the measurement of the real and

imaginary parts for a cross-power spectral density function are approximately

the same as the standard error for an ordinary power spectral density measure-

merit= as given by equation (37).

b. Resolution

c. Sample Record Length

d. Averaging Time

e. Scan Rate and Analysis Time

The considerations associated with these four factors are exactly the

same as for power spectral density measurements discussed in Paragraphs
D. 3. b., c., d., and e. of this section.

E. Determination of Noise Bandwidth

From Section VHi. D, the estimation of ordinary and cross-power spectra
is a function of the noise bandwidth for the analyzer filter. The concept of

noise bandwidth is usually associated with the characteristics of filters.
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However, the noise bandwidth concept may also be applied directly to random

vibration on response signals.

1. NOISE BANDWIDTH OF FILTERS

Given any real linear filter, the noise bandwidth is defined as that

bandwidth of an ideal rectangular filter which would pass the same amount of

signal power as the real filter when the input is white noise (a random signal

with a uniform power spectrum over all frequencies). If the real linear filter

has a complex frequency response function of H (f), the noise bandwidth of the
filter is defined mathematically as follows:

O0

1
B / tH(f)l . (46)

m 0

Here, i H(f)[ is the magnitude of the frequency response function at any fre-

quency f, which is often called the magnitude response function. The term

]Hm[ is the peak value of the magnitude response function.

, f

For example, assume a filter consists of a single-tuned resonant

• = ,2a which is small compared:circuit with a half power point bandwidth of __Bhp

to the filter center frequency f . This is effectively a narrow bandpass filter
C

with a cutoff characteristic of 6 dB per octave. The magnitude response
function for this filter is given by

I a2]H(f) l = a2 + (f_ fc)Z + a2 + (f+ fc)2 • (47)

Note that the peak value of H (f) occurs when f = f
c

equal to unity, as shown below.

and is approximately

IHm[ _ ]H(fc)[ = 1+ a2_-_
lifa<<f

c
(48)

Here, the noise bandwidth is given as follows:
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7[ a2B=
0 a2 + (f + fc )2 + a2 ]aZ + (f_ fc)2 df= 7ra . (49)

Since the half power point bandwidth is Bhp = 2a, the relationship between the

noise bandwidth and the half power point bandwidth is

(50)
B=_ Bhp

The meaning of equation (50) is as follows. If a white noise input is applied

to a single-tuned filter with a half power point bandwidth of Bhp Hz, the mean

square value of the filter output will be exactly the same as if the filter had an

ideal rectangular characteristic with a bandwidth of B Hz as given in equation

(50). The importance of the noise bandwidth concept should now be clear. It

is a method for reducing any real filter to an equivalent ideal filter with

infinitely sharp cutoff characteristics.

The above example illustrates how noise bandwidths may be mathemati-

cally determined. However, it is very rare in actual practice to have an

explicit equation for the magnitude response function of filters which are being

used. Furthermore, the magnitude response function for the bandpass filters

used in vibration analysis equipment is often a complicated expression which

would make the required integration in equation (46) difficult to accomplish.

Fortunately, there are straightforward empirical techniques for measuring
the noise bandwidth of real filters which will now be discussed.

2. NOISE BANDWIDTH CALIBRATION PROCEDURE

The noise bandwidth of a filter can be experimentally determined using

an oscillator (sine wave signal generator) and a voltmeter, as follows. Apply

a sine wave with a known voltage and frequency to the filter, and measure the

filter output voltage. The ratio of the output voltage to the input voltage de-

fines the magnitude response function at that frequency; that is,

)Y(f) [
IX(f) [ ]H(f) [ (51)

where IX(f) I is the magnitude of the input voltage and IY(f) I is the magnitude

of the output voltage at frequency f. Note that the voltage measurements may

be in terms of peak, average, or rms values. It makes no difference as long
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as the measurements are consistent. When each measurement in equation (51)

is squared, a set of values for IH(f) 12 at various frequencies is obtained. The

magnitude response should be measured at a sufficient number of frequencies

to permit an accurate plot of ill(f) i 2 versus f. The area under this plot,

divided by the peak value of the plot, is equal to the noise bandwidth.

For the case when a filter is incorporated in a PSD analyzer, the values

for 1H(f) ] 2 at various frequencies can be measured directly by using the mean

square value detection circuit in the PSD analyzer. The ratio of the mean

square output from the PSD analyzer to the mean square value of the input

signal is equal to the square of the magnitude response function; that is,

y2(f) = lH(f) l 2 • (52)

x2(f)

The following example is based upon an actual noise bandwidth calibra-

tion for a multiple filter type PSD analyzer. The filter which was calibrated has

a nominal bandwidth of 10 Hz with a center frequency of 35 Hz. The mean

square output from the PSD analyzer was measured when a sinusoidal signal

was applied to the filter of interest with a constant amplitude and at various

frequencies about 1 Hz apart. A block diagram for the calibration test set-up

is shown in Figure 53. The resulting plot of IH(f)i _ versus f, as well as the

associated plot of [H( f)l versus f, is shown in Figure 54. Note that the plots

are displayed on a log-log scale because the skirts of a filter will characteris-

tically appear as straight lines in such a display. This type of display is desir-

able since it is clearly easier to fit empirical data with straight lines than with

curves, as would be required if the plots were displayed on a rectilinear scale.

The plot of IH(f) ] 2 versus f in Figure 54 has already been properly

normalized so that the maximum value is equal to unity; that is, IHml = 1.

Hence, the noise bandwidth is given directly by the area under the plot. The

area under the plot may be determined by noting the value of [H(f) 12 at various

frequencies separated by an increment Af, determining the product Af IH(f) 12
at each frequency noted, and computing the stun of these products. For the

plot presented in Figure 54, if the value of [H I f)[ 2 is noted at frequencies

from 24 to 49 Hz in 1-Hz increments, the following results are obtained.
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25

26

27

28

29

30

31

32

33

34

35

36

[H(f)j 2 _f

0. 039 I. 00

0. 056

0. 084

0.12

0. 17

0. 24

0.34

0.46

0.63

O. 80

0.97

I.00 _r

Af [H(f)l

0. 039

0. 056

0. 084

0.12

0. 17

0.24

0.34

0.46

0.63

0. 80

0.97

1.00

f I H( f)l

37 0. 99

38 0. 96

39 0. 93

40 0. 87

41 0. 74

42 0. 57

43 0. 36

44 0. 22

45 0. 14

46 0. O95

47 0. 056

48 0. O4O

49 0. 030

Af

1.00

Ir

Af _(f)[2

0.99

0.96

0. 93

0. 87

0.74

0. 57

0.36

0.22

0.14

0. 095

0. 058

0. O4O

O. 030

Total 10. 91

The noise bandwidth for the filter employed for the example is

B = 10.9 Hz. Porper power spectral density measurements will be obtained

with this filter by adjusting the bandwidth division resistor for the filter to

be equivalent to 10.9 Hz.

The half power points of the filter were also determined during the

calibration by noting the frequencies where the value of [H (f) [ 2 was equal to

0.5. These frequencies were found to be 32.2 and 42.6 Hz. Thus, the half

power point bandwidth of the filter is Bhp = 10.4 Hz. The ratio of the noise

bandwidth to the half power point bandwidth is as follows-

B 10.9

Bhp 10.4

- 1.05 (53)

Furthermore, the cutoff rate for the filter is at least 30 dB per octave. These

observations are consistent with two general characteristics of the noise band-

width for bandpass filters, as follows:

a. In most cases, the noise bandwidth for a bandpass filter is larger

than the half power point bandwidth.

147



b. In most cases, ff a baadpassfilter has cutoffs of over 30 dB per

octave the difference between the noise bandwidth and the half power point

bandwidth is less than 5 percent. For such cases, it may be assumed that the

noise bandwidth is equal to the half power point bandwidth.

3. ALTERNATE CALIBRATION PROCEDURE

There is another procedure for determining the noise bandwidth of

bandpass filters which is simpler than the procedure detailed in Paragraph

E. 2. of this section, but usually less accurate. This procedure is to mea-

ure the mean square output of the filter when the input is a band limited white

noise (uniform power spectrum) having a known power spectral density. If the

input white noise has a uniform power spectral density of G, and the output has

a mean square value of y2 , the noise bandwidth for the filter is given by

G " (54)

Many commercial random noise generators produce random signals

with a reasonably uniform power spectrum, at least over certain frequency

ranges. However, there is a problem in determining what the power spectral

density for the noise generator signal is for a given output setting. Further-

more, the value y2 must be measured using long averaging times to minimize

the statistical uncertainty of the measurements. In general, the white noise

calibration procedure is not sufficiently accurate to be used as a primary

calibration method. However, it is often helpful as a check on a more thorough
calibration as detailed in Paragraph E. 2. of this section.

4. NOISE BANDWIDTH OF RANDOM SIGNALS

Consider a stationary random vibration response y(t) with a power

spectral density function G (f). Assume the input excitation x(t) which
y

produces the response has a power spectral density function Gx(f ) . The
following relationship is true:

G (f)= H(f)2y Gx(f) • (5B)

Here, IH(f) I is the magnitude response function for the structure, which may

be thought of as a mechanical filter. However, for the purposes of data re-

duction, the individual characteristics of [H(f) [ and Gx(f ) are of no concern.
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For example, it may be assumed that the input x(t) is white noise where

Gx(f) = unity, and that the filter has a squared magnitude response function

of ]Hi(f))2-- )H(0 [2Gx(f) ;that is,

G (f) -- IH1(f)I _- = IH(f)12G (f) . (56)
y x

Hence, the response power spectrum is equivalent to the squared magnitude

response function for a fictitious filter. It is this reasoning that permits the

concept of noise bandwidth to be applied directly to random signals.

By substituting equation (56) into equation (46), the noise bandwidth

for a stationary random vibration response y(t) is given by

1
B - G f G (0 ¢u (sT)Y

m 0

where G (f) is the power spectral density function of y(t) and G is the
y ' m

maximum value of G (f). From Paragraph B. 2. c. of this section, it is seen
Y

that the integral in equation (56) is equal to the mean square value of y(t).

Hence, the following important relationship is obtained:

yZ
B - . (58)

G
m

The noise bandwiclth of a random vibration response is equal to the mean square

value of the vibration divided by the peak power spectral density of the vibration.

F. PracticalConsiderationsfor PowerSpectraMeasurements

Referring to Paragraph D. 3. of this section, the measurement of

power spectral density functions for random vibration data basically involves

the measurement of mean square values in narrow frequency bandwidths, as

noted in equation (36). The implication is that the measurement of rectified

average values is not proper. In general, this is true. However, mean square
values for random data can be obtained from average value measurements if

the data are assumed to have a Gaussian (normal) probability density function.
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Consider a random signal y(t) with a Gaussian probability density

function. The mean square value y2 and the rectified average value ly] are
related as follows:

m

y2 =__ (_yl)2= 1.57 (]y])2 (59)2 "

In terms of the rms value,

Yrms = = 7r "_y[ __ 1.25 lY]

From equation (19), the relationship between the rms value and

rectified average value for a sine wave is as follows:

(60)

Yrms - ]YJ = 1.11 ]y[ . (61)

Hence, for the conventional ac voltmeter which detects rectified average values

but reads out in rms values for sine waves, the following relationship is true:

2

Yrms _ irms 1.13 Irms " (62)

Here, Yrms is the true rms level of the random Gaussian signal and Irm s

the indicated rms level on the voltmeter scale.

is

Now consider these associations in terms of power spectral density

measurements. Assume a spectral analysis of random vibration data is per-

formed using a PSD analyzer with a rectified average value detection circuit.

If the assumption is that the data has a Gaussian probability density function,

the mean square value of the data within any narrow bandwidth B is given

from equation (59) as follows:

2 ( B)2 (63)

Hence, the power spectral den ty function at any center frequency f may be

estimated from equation (36) as follows:
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G(f)-- _
y 2B (IYlB)Z " (64)

For a constant bandwidth analysis, the coefficient 7r/(2B) is simply a calibration

constant. The required square of the rectified average value lY] may be ob-

tained by an appropriate readout scale calibration. In fact, ff the analyzer

output is passed through a logarithmic converter, the squaring may be accom-

plished by a proper adjustment of the readout sensitivity.

The only problem with the above procedure is that the Gaussian assump-

tion must be reasonably valid. As the data deviate from the ideal Gaussian

form, the ratio of the rms to average value changes and the conversion factor

in equation (64) becomes inaccurate. However, the resulting error may not

be significant as compared to the statistical uncertainties in the analyzed data.
These matters have been considered by many investigators in the past. The

general consensus of opinion is that a mean square value measurement capa-

bility is not a compelling necessity, but is still very desirable because it

does eliminate a possible error from the analysis procedure and simplifies

the calibration.

For academic interest, one additional point should be made on this

subject. Strong deviations from a Gaussian probability density function in

random vibration data are usually associated with nonlinear characteristics of

the structure whose response is being measured. The type of deviation from

the Gaussian form is a function of the nonlinear characteristic and the param-

eter being measured. For example, the probability density function for the

acceleration response of a hardening spring type structure will tend to show

large kurtosis (bunching around the mean value and thickening of the tails).

However, the probability density function for the displacement response of

the same structure will tend to show small kurtosis (spreading around the

mean value and thinning of the tails). These matters are discussed in Section

9 of Reference 21. In any case, the severity of the nonlinear conditions and the

resulting deviations of the response amplitudes from the Gaussian form will

increase as the response amplitude increases. Hence, the most severe devia-

tions from normality are to be expected at resonant frequencies where the

response amplitudes are a maximum. These resonant points which appear

as sharp peaks in the response power spectrum might then be expected to dis-

play the greatest deviation from the ideal Gaussian form.

However, there is another factor which tends to counteract the nonlinear

effects discussed above. It can be shown that narrow bandwidth linear filtering

of random signals tends to suppress deviations from the ideal Gaussian form.
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In other words, the narrow bandpass filter in the power spectral density
analyzer will tend to reduce nonoGaussian amplitude characteristics in the

vibration data. However, this effect is only pronounced when the bandwidth

of the input signal is wide relative to the bandwidth of the linear filter. For

vibration data from a resonant structural response, the bandwidth of the data

is quite narrow since it has already been filtered (a resonant structural mode

is equivalent to a narrow bandwidth nonlinear filter). Hence, the bandwidth
of the analyzer filter must be narrow compared to the bandwidth of the structural

resonance before any benefits will be obtained.

G. Multiple Filter Analyzers

The usual wave analyzer employs a single filter which is progressively
moved through the spectrum of interest. Time is consumed by this serial

process, which can be largely avoided by a paralled process employing a large

number of contiguous bandpass filters. With a large number of contiguous band

filters each filter acts simultaneously with the others so that the filtering action

is essentially done in real time. After filtering and squaring the input function,

averaging is necessary, which does consume time. However, the precessive

requirements on filtering are removed and this permits a very large time

reduction. In practice the penalty imposed is the price of the equipment; the

advantage gained is a reduction of analyzing time by an order of 100:1.

A typical multiple filter analyzer is shown in Figure 55. This is of the
heterodyne type, which reduces certain problems in filter manufacture. The

number of filters employed is of the order of fifty, which are graduated in

bandwidth from about 10 to 100 Hz. The band covered is ordinarily 10 Hz

to 2000 to 3000 Hz, but this may be extended by altering the frequency of the
heterodyne oscillator, enabling a bandwidth of about 10 000 Hz to be obtained.

One of the operations shown in Figure 55 is that of squaring and detecting.
For some applications the squaring function may be deleted, in which case the

output of the analyzer is the averaged absolute value of the spectrum of the
function.

In Figure 55, a multichannel display is produced in which the energy
in each individual filter is separately shown, producing n records. The usual

display device is a multichannel galvanometer oscilloscope. Another type of
display can be added to the ensemble of filter records described above. In this

case the energy output from each filter channel is stored in its integrator for

a preselected integration time, whereupon all channels are read out successively

by a commutator and plotted on a graph. This results in a display of integrated
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energy versus frequency over the spectrum of interest. The display device can

be a conventional X-Y recorder, image storage oscilloscope, card punch, etc.

In this manner, successive power spectral density plots may be obtained in

intervals of 1 to 2 seconds, an advantage when the stationarity of the process

under consideration is in question.

H. A Method of Calibrating a Swept Filter Analyzer or a
Multiple Filter Analyzer for Power Spectral Density

Analysis

The method of calibrating either a single channel swept filter system or

a multiple filter analyzing system is very similar. It consists of the following
steps:

1. _eed a calibration sine wave into the analyzer system. This sine

wave will have an amplitude proportional to the amplitude of the quantity being
measured.

2. Make sure that no bandwidth division is included in the filter system

during this set-up time. Dividing a sine wave by the filter bandwidth is mis-

leading and erroneous.

3. Connect the filter output to a suitable recording device. X-Y

recorders or oscillograph recorders are acceptable.

4. Since the input sine wave signal, representing a known amplitude

of the quantity being measured, was assigned a particular value (2G rms, for

instance) then the full-scale X-Y plotter reading would be the squared value

of the input. In this case, since the input was 2G rms, the output full-scale

becomes 4G 2 (mean square) full-scale.

5. Remove the sine wave calibration signal and apply the random

signal which is to be analyzed.

6. Place the bandwidth divisor switch in the circuit.

7. Step 6 has normalized the output so that the plotted amplitude is
now in terms of G2/Hz.
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8. With the random signal to be analyzed applied to the input (by

means of a type loop recorder-reproducer) the signal is continuously fed

into the analyzer while the analyzing system sweeps across the frequency

spectrum of interest.

9. The resultant graph is then a plot of power spectral density with

the Y axis in terms of G2/Hz and the X axis in terms of frequency.

These nine steps may be used to calibrate a swept filter system for

the analysis of a random wave by using a sine wave of an assigned value for

the calibration source. The following method is used to calibrate a multiple

filter system for analysis of random waves. Again, a sine wave of an assigned

value is used for calibration. Although the same principle is used, there is a

slight difference in procedure. In the multiple filter system, the bandwidth

divisors are connected at all times. However, one filter in the multiple filter

system, usually the narrowest, will not have a bandwidth divisor. It is this

filter channel, the one not containing a bandwidth divisor, that is used for the

sine wave calibration.

A sine wave of an assigned value is fed to the multiple filter system.

However, in this case, the sine wave must be at the frequency of the filter

containing no bandwidth divisor. The output of this filter channel is connected

to an appropriate recording device. Full-scale again is set up, as in step

4 above. The sine wave calibrating signal is removed and the random wave

is connected to the multiple filter system. In the case of wide band white

random noise, all filter outputs will be equal in amplitude. This is because

all channels have been normalized by bandwidth division. The resulting

plot (or in the case of an oscillograph, a multichannel plot) will give the

G_/Hz spectrum amplitude.

In most instances, a white random noise is not applied to the analyzer

system; therefore, a fiat or equal energy per Hz signal will not be obtained

at the output. High peakd ma]2 occur which will drive the recorder off scale.

In this case, a second analysis run may be necessary. When the data to be

analyzed are completely unknown, the chance of driving the recording device

over full-scale at some particular frequency is likely. When this does occur,

the point at which the recording device is driven off scale is the point at

which the system should be recalibrated. The initial calibration has not been

wasted, it is merely a first look at the data to see where the peaks do occur

and where the system should be calibrated. Some data survey is usually

necessary before a final analysis can be made. In some instances, survey

may not be required, since the data to be analyzed are known to be very

similar to data previously analyzed.
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SECTION IX. INTERPRETATIONAND EVALUATIONOF DATA

Section VIH discussed the general techniques for reducing vibration

amplitude time history information into simplified descriptive data. This

section is concerned with the proper interpretation and evaluation of the

reduced data for applications to structural vibration problems. The desired

method for evaluating vibration data is a direct function of the specific

engineering problem to be studied. Each particular application usually

requires a different emphasis in the interpretation of the data. However,

there are certain basic procedures for interpreting and evaluating vibration

data which are applicable to nearly all structural vibration problems.

Before measured vibration data can be intelligently interpreted and

applied to any problem, it is necessary to know if the data are basically
random in nature as opposed to being periodic. If vibration data are to be

used for prediction purposes, it is necessary to investigate the time invariance
(stationarity) of the data. It is also desirable to determine if the data meas-

ured at various different points on a structure or similar structures are

equivalent.

In the area of direct engineering applications, the most basic and perti-

nent interpretations of vibration involve probability density and joint probabil-

ity density functions, autocorrelation and cross-correlation functions, and

power spectral density and cross-power spectral density functions.

Paragraphs A., B., and C. below discuss the procedures for evaluating
the randomness, stationarity, and equivalence of vibration measurements.

Specific engineering procedures are detailed with numerical examples. Para-

graphs D., E., and F. discuss the interpretations and applications of prob-

ability density, correlation, and power spectral density functions for single

and multiple vibration measurements. The interpretation of each function

is illustrated by a numerical example involving a common engineering
vibration problem.

A. Evaluation of Randomness

Random vibration is that type of time-varying motion which consists of
randomly varying amplitudes and frequencies such that its behavior can be

described only in statistical terms. No analytical representation for the

vibratory motion is possible. The vibration does not repeat itself after
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a finite time period. For all practical purposes, vibration may be considered

random unless motion with a periodic form is present.

There are, of course, other types of vibratory motions that are neither

random nor periodic. For example, the motion produced by the sum of two or

more sine waves is not periodic unless the frequencies for the individual sine

waves have a common multiple, as discussed in Section VHI.A. 1. However,

in actual practice, such a motion may be considered periodic with little error

if the available data record is sufficiently long.

If vibration data are purely periodic, the fact is usually obvious by

simple observation of an amplitude time history plot. However, when vibra-

tion data are a mixture of both random and periodic portions, this fact is often

not obvious. There are several different techniques which may be used to

detect the presence of periodic components in an otherwise random vibration

response. Some of these techniques consist of qualitative inspections of the

vibration properties which might be measured from sample records as a

normal part of the random data reduction. Other techniques involve the

application of a specific quantitative test to sampled data. These techniques
will now be discussed.

1. QUALITATIVE TESTS FOR RANDOMNESS

The presence of periodic components in an otherwise random vibration

response may often be detected by visual inspection of a power spectral density

function, an amplitude probability density function, and/or an autocorrelation

function measured from stationary sampled data.

To illustrate how a poer spectrum can reveal the presence of a periodic

component in an otherwise random signal, refer to Figure 56. In this example,

the output of a random noise generator was mixed with a sinusoidal signal. The

sinusoidal signal was given an rms amplitude equal to one-twentieth that of the

random signal. Plot A which was made using a relatively wide filter gives

little or no indication of the presence of the sinusoid. Plot B which was made

using a medium filter indicates a possible sinusoid quite clearly. Plot C

which was made using a norrow filter gives a strong indication.

Figure 56 illustrates how a highly resolved power spectrum will reveal

periodic components as sharp peaks, even when the periodicities are of relative-

ly small intensity. However, a sharp peak in the power spectrum for a vibration

response may also represent the narrow band random response of a lightly
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Figure 56. Actual power spectra plots.
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damped structural resonance. These two cases can sometimes be distinguished

from one another by repeating the power spectral measurement with the nar-

rowest available PSD analyzer filter bandwidth. If the measured spectral peak

represents a sine wave, the indicated bandwidth of the peak will always be equal

to the bandwidth of the PSD analyzer filter, no matter how narrow the filter is.
This method of detection will not work unless the bandwidth for the norrowest

PSD analyzer filter is smaller than the bandwidth for a possible narrow band

random response peak. For the case of spectral peaks with relatively low

center frequencies, say less than 50 Hz, a structural resonance may have a

bandwidth of less than 1 Hz, making it very difficult to distinguish from a

sine wave.

The presence of periodic components in an otherwise random vibration

response may also be revealed by an amplitude probability density function for

the response. The probability density plots for a sine wave and a rendom sig-

nal are markedly different. A random signal will usually hava a probability

density function which at least resembles the familiar bell-shaped Gaussian
characteristic, while a sine wave has a dish-shaped probability density function.

A mixture of the two takes on prominent characteristics of both. This is clear-

ly illustrated by the actual measurements in Plots A, B, and C of Figure 57.

Perhaps the most powerful method of detecting periodicites in an
otherwise random vibration response is presented by an autocorrelation plot.

For any purely random signal, the autocorrelation function will always

approach zero (assuming the signal has no dc component) as the time dis-

placement becomes large. On the other hand, the autocorrelation function

for a periodic signal is also periodic, and will continue to oscillate in a steady

state manner no matter how large the time displacement becomes. Thus the

autocorrelation plot for a signal representing a mixed random and periodic

vibration response will decay to a perpetual periodic oscillation as the time

displacement becomes large. These matters are illustrated by Plots A, B,

and C of Figure 58, and are further discussed with numerical examples

in Section IX. E. 3.

2. QUANTITATIVE TEST FOR RANDOMNESS (VARIANCE TEST)

Quantitative tests for randomness have been developed and studied

experimentally in Section 15 of Reference 21. These tests permit a statistical

decision, with a defined probable error, to he drawn from rudimentary investi-

gations of a sample vibration response record. The most practical quantitative

test for applications to flight vehicle vibration data involves an investigatio- o|
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the variance of narrow band mean square value measurements (or power
spectral density measurements). This procedure is identified as Randomness

Test B in Reference 21. The principles of that test may be summarized as
follows.

As discussed in Paragraph I above, the existence of a sinusoid in an

otherwise random signal will be revealed by the presence of a sharp peak in

a properly resolved power spectrum for the signal. However, a narrow

band random signal representing a high Q resonance in a structural vibration

response will also appear as a sharp peak in a power spectrum. These two

cases can be distinguished from one another by examining repeated measure-

ments of the mean square value for the spectral peak at different times. If

the peak represents a sinusoid, mean square measurements taken at different

times should be exactly the same except for slight differences due to either

or both observational errors and possible sensitivity drift in the measurement

equipment. There are no uncertainties or sampling errors associated with

measurements of periodic signals.

On the other hand, if the peak is a narrow baud random signal (assumed

to be stationary}, mean square measurements taken at different times will
show scatter because of the inherent uncertainties associated with random

signal measurements. To be more specific, mean square measurements for

a stationary random signal will show scatter or variability which may be

defined in terms of a normalized variance c _, ae follows:

" (6S)
a

Here, B is the equivalent ideal bandwidth of the random signal in Hz and T a

is the averaging time used to measure a mean square value in seconds. From

equation (65), as the bandwidth or averaging time is decreased, the variability

of the resulting measurements is increased. These theoretical ideas form the
basis for the randomness test outlined here.

Assume a sample record of length T seconds is obtained from a

stationary vibration response. Further assume the power spectral density

plot estimated from the sample record reveals one or more sharp peaks.

Each p_ak may be tested for randomness by the following procedure:
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lo

o

o

1

Tune the narrow bandpass filter of the PSD analyzer over a

peak of interest so that the narrow frequency range of the peak
is isolated from the remainder of the signal.

Obtain a collection of mean square measurements by averaging

over each of N number of equally long segments of the sample

record. Clearly, the required averaging time for each measure-

ment is T = T/N. For certain theoretical reasons, the
a

number of measurements should be restricted to N < 0.1 BT.

If averaging is accomplished by continuous smoothing with a

low pass RC filter, the resulting continuous mean square

measurement time history can be reduced to a collection of

discrete mean square measurements by the procedures

illustrated in Figure 59.

Compute the expected normalized variance e 2 for the collection

of mean square measurements, assuming the sampled signal is

random, by using equation (65). The bandwidth B in equation

(65) is assumed to be the bandwidth for the PSD analyzer

filter.

Calculate the actual normalized variance E 2 for the collection

of mean square measurements by using the following computatio-

nal formula:

A

E 2 _--

N1 _, A2
G.i=1 1

N ^

i=l

N

N]2Gi
i=1
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GIVEN A SAMPLE RECORD OF LENGTH T SECONDS, A CONTINUOUS RC AVERAGED

MEAN SQUARE VALUE MEASUREMENT (OR POWER SPECTRAL DENSITY MEASURE-

MENT) MAY BE REDUCED TO A COLLECTION OF EQUIVALENT TRUE AVERAGED MEAN

SQUARE VALUE MEASUREMENTS AS FOLLOWS. LET THE RC AVERAGING TIME

CONSTANT K BE SHORT COMPARED TO THE RECORD LENGTH T; THAT IS, K<_<_T.

NOW, DIVIDE THE CONTINUOUS MEASUREMENT INTO N EQUAL INTERVALS SUCH

THAT EACH INTERVAL IS ABOUT 3K OR 4K LONG, AS SHOWN BELOW. THE LEVEL

OF THE CONTINUOUS MEASUREMENT AT THE END OF EACH INTERVAL WILL CONSTITUTE

A DISCRETE MEASUREMENT BASED UPON AN EQUIVALENT TRUE AVERAGING TIME OF

Ta'2K. THE INDIVIDUAL READINGS SHOULD BE 3K OR 4K APART TO ASSURE

THAT THEY ARE STATISTICALLY INDEPENDENT.

i.u

--I
<
>
iu

Z
<
iu
:S

A A A A A

G1 G2 G3 GIN.l) GN

3 (N-l) N

II
I I 1 I I

0 TIN 2T/N 3T/N (N-1)T/N T

TIME, SEC.

Figure 59. Analysis of continuous mean square value measurements.
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N

N-1

N ^2

N i _ G.=1 1

(66)

Q

A

Here, G i is the_ ith mean square measurement where

i = 1,213, ..-,N.

Determine the ratio of the actual and expected normalized

variances as follows:

If R is statistically equivalent to unity, the power spectral

density peak being investigated is considered to be the result

of a narrow band random vibration response. If R is signifi-

cantly less than unity, the power spectral density peak is con-

sidered to be the result of a periodic component in the vibration

response. The criteria for deciding if R is equivalent to unity
or significantly less than unity is as folloCws:

x2 (N-I_ -(l-a)
R = 1 ifR > ' (68a)

_ N-I

X2 (N-l) ;(l-a)
R( < 1 ifR c < N-I " (68b)

Here, X2 is a chi-squared distribution with N-1
(N-t) ;(t-(_

degrees of freedom. N is the number of measurements employed,

and _ is the level of significance for the decision. The level of

significance defines the probability of erroneously concluding
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that the peak represents a sinusoid when in fact it represents

a narrow band random signal. An erroneous conclusion of this

type is referred to as a Type I error. Clearly, the risk of

making a Type I error is reduced by using a smaller value of

c_ in equation (68).

A tabulation of values for X2 may be found in most statistics

books. Equation (68) is plotted for the levels of significance

--- 0.05 in Figure 60.

The above step-by-step procedure effectively accomplishes a statistical

hypothesis test without going into fundamental details, so that the test may be

employed by individuals who do not have a working knowledge of applied statis-

tics. If the procedure is carefully followed, statistically sound decisions will

result in most cases.

As noted in Step 5, there is always a risk of concluding that the peak

represents a sinusoid when it actually represents a narrow band random

signal. This risk defined by c_ is the probability of making a Type I error.

However, there is also a risk of concluding that the peak represents a

narrow band random signal when it actually represents a sinusoid. An erron-

eous conclusion of this type is called Type II error. The Type II error
probability associated with the test is a function of certain fundamental con-

siderations which are not discussed here. These considerations are presented

in Reference 11. In general terms, the risk of making a Type 1I error in-

creases as cz becomes small and decreases as N becomes large. Thus, the

probability of making either a Type I or Type H error will be minimized by

using as many measurements as feasible, as long as the number of measure-

ments does not exceed the quantity of 0.1 BT.

It has been noted in paragraphs A. 1 and A. 2 of this section that the

various techniques for detecting periodic components in an otherwise random

vibration response are applicable only if the data are stationary. If the

various techniques are applied only to that data in the narrow frequency range

of sharp power density peaks (as they should be for maximum effectiveness),

the stationarity requirement then applies only to the narrow frequency ranges

being investigated. However, if a power spectral density peak is not station-

ary, the peak cannot represent a periodic component since a periodic function

is by definition steady state (stationary). Hence, if vibration data do not

comply with the stationarity requirement, a test for the presence of periodic

components is not really needed since the data by implication contain no

periodic components.
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Numerical Example:

Assume a sample record of length T = 10 seconds is obtained from a

vibration response which is believed to be stationary. Further assume the

power spectrum measured from the sample record reveals a sharp peak which

is to be tested at the _ = 0.05 level of significance for the presence of a
periodic component.

Following the procedure outlined in paragraph A. 2. of this section,
let a PSI) analyzer filter with a bandwidth of B = 56 Hz be tuned over the

peak to isolate it from the remainder of the signal. Now, let a collection

of N = 31 power spectral density (mean square value) measurements be

obtained from the sample record by averaging over 31 consecutive intervals

ofT =0.32second. Note thatN=31 < 0.1 BT = 56, as it should be.
Assaume that the resulting measurements are as follow:

Data for Example (a)

Power Spectral Density Measurements Gi, volts 2/Hz

1.84 1.09 1.49 1.61

1.56 2.27 2.39 1.64

2.19 2.33 2.10 2.08

2.60 2.70 1.94 1.78

1.37 2.01 2.21 2.49

2.84 1.62 1.80 1.45

I. 40 3.08 2.21 I. 83

1.83 1.76 1.79

From equation (65), the expected normalized variance for the measurements

if the data is purely random is

¢2 = 1__ = 0.056
BT a
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From equation (66), the actual normalized variance for the measurements is

A
c2 = 0.055

From equation (67), the ratio of the actual to expected normalized variance is

R =_ =0.98
E E 2

Referring to equation (68) and Figure 60, it is clear that R is not significantly¢

less than unity at the _ = 0.05 level of significance. Hence, there is no reason

to believe that the power spectral density peak is the result of a periodic com-

ponent. The peak may be considered to be the result of a narrow band random
vibration.

The measurements used for numerical example (a) are taken from

Section t5 of Reference 21, and are actual power spectral density measure-

ments for a truly random signal, as indicated by the above test.

Data for Example (b)

Power Spectral Density Measurements Gi, volts2/Hz

1.91 2.25 2.01 1.78

1.68 2.08 I. 80 2.13

1.82 1.93 1.89 2.01

2.03 1.92 2.05 2.05

2.07 t. 9t 1.89 1.71

1.90 2.26 2.03 t. 83

1.53 i. 76 2.22 I. 72

1.55 i. 82 2.19
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From equation (66), the actual normalized variance for this set of measure-
ments is

_2 = 0. 0096

From equation (67), the normalized variance ratio is

R = 0.17 .
£

Referring to equation (68) and Figure 60, it is clear that R e is significantly

less than unity at the _ = 0.05 level of significance. Hence, there is reason

to believe that the power spectral density peak is the result of a periodic

component.

The measurements used for numerical example (b) are taken from

Section 15 of Reference 21, and are actual power spectral density measure-

ments for a signal consisting of a sine wave buried in noise, as indicated by
the above test.

B. Verification of Stationarity

The general concept of stationarity as applied to vibration data is dis-

cussed in Section VHI.A. 2. It is noted there that the descriptive properties

of a random vibration response measured from a sampled vibration over any

time interval for which the vibration is stationary. Predictions may be made

for future time intervals for stationary data. If the sampled vibration is non-

stationary, the data measured from a sample record will reflect only the

vibration response properties of that one record alone during that particular

time interval when the sample record was obtained. No rigorous predictions

may be made for future time intervals when data are nonstationary.

There are two basic procedures for sampling a flight vehicle vibration

environment. The first procedure is to obtain a single continuous sample

record Cat each measurement point of interest) which covers an entire experi-

ment. Continuous sampling is usually employed for experiments involving
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short term flight vehicles such as missiles and certain spacecraft. The

second procedure is to obtain a collection of short sample records (at each

measurement point of interest) which are obtained for various limited time

intervals during the experiment. Interval sampling is usually employed

for experiments involving long term flight vehicles such as long range bombers.

For the first case where a single continuous sample is available,

stationarity means that the vibration response does not change over the length

of the sample record (or a specific time interval covered by the sample

record). In other words, if the continuous sample record were broken up

into many short samples, the descriptive properties measured from each of the

various short samples would be equivalent. If this is true, then one set of time

invariant properties measured from the entire sample record may be used to

describe the sa_npled vibration.

For the case where a collection of short samples is available, station-

arity means that the vibration response is the same for each time interval

when a sample is obtained. If this is true, then the collection of samples may

be pooled together into one long sample record, and one set of properties

measured from the composite sample may be used to describe the sampled
vibration. In either case, stationarity effectively means that the properties

of a vibration response measured from sample records obtained at different

times are equivalent.

For practical purposes, vibration response data may be considered

sta_.ionary if the mean square values measured from sample records obtained

at different times are equivalent. Technically, the mean value and autocor-

relation function should also be time invariant. However, the mean value of

vibration data is usually zero, and for certain practical reasons, it is unlikely

that the autocorrelation function is changing if the mean square value is not

changing. Hence, the determination of stationarity can usually be limited to an

investigation of mean square values.

In many instances, statiouarity or nonstationarity in measured vibration

data is obvious. This is particularly true when the uncertainty associated with

the measurements is small. For example, if the mean square values measured

from a collection of sample records were all within a few percent of one another,

the collection of measurements could clearly be considered equivalent without

further attention. On the other hand, if a collection of mean square values,

each with a measurement uncertainty of only a few percent, displayed

scatter if p_rhaps two or three to one, then the collection of measurements

could clearly be considered nonstationary without further attention. The problem
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arises when the available data have a relatively high measurement uncertainty

due to a narrow bandwidth or short record length. It is often difficult in such

cases to distinguish between expected statistical scatter and nonstationarity.

Two different quantitative tests for stationarity are now outlined. The

first procedure is based upon a measurement variance test similar to the test

for randomness outlined in Paragraph A. 2. of this section. This procedure

is developed and experimentally studied in Section 16 of Reference 21. The

second procedure is based upon nonparametric statistical techniques discussed
in Reference 22.

. VARIANCE TEST FOR STATIONARITY COMBINED WITH RANDOM-

NESS TEST

This test for stationarity is identical in principle to the test for ran-

domness outlined in Paragraph A. 2. of this section. The variance of mean

square measurements obtained at different times is compared to the theoreti-

cally expected variance for mean square measurements of a stationary random

signal. As a lack of randomness will tend to reduce the scatter in repeated

mean square measurements, a lack of stationarity will tend to increase the

scatter in repeated measurements. Hence, the procedure for applying the

variance test for stationarity is the same as the procedures presented for

the randomness test in Paragraph A. 2. of this section, except for the final

decision which is based upon whether or not the ratio R e is significantly

greater than unity rather than significantly less than unity.

The variance test for randomness assumes that the signal being tested

is stationary, and the variance test for stationarity requires that the signal

being tested is random. It is then logical that the two characteristics of ran-

domness and stationarity should be established jointly by a single test pro-

cedure. A combined test does pose one practical problem. The randomness

test is most effective when applied to a narrow frequency range obtained

by locating a narrow bandwidth filter over a sharp peak in the power spectrum

of the signal. On the other hand, a stationarity test should ideally be applied

to the entire frequency range of the signal. However, it is often acceptable

to test only the sharp spectral peaks for stationarity, since most of the relative

power of the vibration response is represented by these peaks. If the peaks

in the power spectrum are found to be stationary, it is reasonable to assume

the entire signal is stationary for most engineering applications.

Assume a sample record of length T seconds is obtained from a vibra-

tion response. Further assume the power spectral density plot estimated from
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the sample record reveals one or more peaks. Each peak may be tested for

randomness and stationarity by the following procedure:

lo Tune the narrow bandpass filter of the power spectra/ density

analyzer over a peak of interest so that the narrow frequency

range of the peak is isolated from the remainder of the signal.

. Obtain a collection of mean square measurements by averaging

over each of N number of equally long segments of the sample

record. Clearly, the required averaging time for each measure-

ment is T = T/N. For certain theoretical reasons, the number
a

of measurements should be restricted to N < 0.1 BT. If averag-

ing is accomplished by continuous smoothing with a low pass RC

filter, the resulting continuous mean square measurement time

history can be reduced to a collection of discrete mean square

measurements by the procedures illustrated in Figure 59.

o

o

Compute the expected normalized variance e 2 for the collection

of mean square measurements, assuming the sampled signal is

random and stationary, by using equation (65).

Calculate the actual normalized variance _ for the collection of

mean square measurements by using the computational formula

presented in equation (66).

o Determine the ratio of the actual and expected normalized var-

iances as follows:

A
R = c2 • (69)

H R is statistically equivalent to unity, the power spectral
c

density peak being investigated is considered to be the result

of a narrow band stationary random vibration response. If R E

is significantly less than unity, the power spectral density peak

is considered to be nonrandom, and if R is significantly greater¢

than unity, the power spectral density peak is considered to be

nonstationary.
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The criteria for deciding if R is equivalent to unity or signifi-
E

cantly different from unity are as follows:

×2 X2 (N-i)" (_/2
R = I if (N-i);(1-(_/2) < R < ' (70a)

N-1 -- N-I

X 2

R< 1 if R < (N-1);_.-ol/2,_'_" _ (70b)
¢ N-I

X 2

> 1 ifR -> (N-I);G/2
Re N-1 " (70c)

Here, X2 is a chi-squared distribution with N-I degrees of
(N-i)

freedom, N is the number of measurements employed, and a is

the level of significance for the decision. A tabulation of values
for X2 may be found in most statistics books. Equation (70) is

plotted for the levels of significance a = 0.01 and _ = 0.05 in

Figure 61. The probable errors associated with a decision are

discussed in Paragraph A.2. of this section.

Numerical Example:

Assume a sample record of length T = 17 seconds is obtained from a

vibration response (the 17 seconds could represent the total length for a col-
lection of sample records obtained at different times). Further assume the

power spectrum measured from the sample records obtained at different

times). Further assume the power spectrum measured from the sample record

reveals a sharp peak which represents most of the relative power of the sig-

nal. The peak is to be tested for randomness and stationarity at the c_ = 0.05

level of significance.

Following the procedure outlined in Paragraph B. 1. of this section,

let a PSD analyzer filter with a bandwidth of B = 56 Hz be tuned over the peak

to isolate it from the remainder of the signal. Now, let a collection of N = 31

power spectral density (mean square value) measurements be obtained by

averaging over 31 consecutive intervals of T = 0.54 seconds. Note that
a

31 < 0.1 BT = 95 as it should be. Assume the resulting measurements are
as follow:
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Data for Example (c)

^

Power Spectral Density Measurements Gi, volt 2/Hz

2.25 2.19 2.00 2.21

1.78 3.20 2.23 1.47

2.26 2.30 3.05 2.44

2.07 2.86 2.15 3.28

i.91 2.68 2.36 3.27

2.85 2.15 2.03 2.49

2.O0 2.54 2.O0 3.43

2.45 2.32 2.57

From equation (65), the expected normalized variance for the measurements

if the data are purely random and stationary is

1
_2 --

BT
a

- 0. 033

From equation (66),

A

¢2 = 0.038

the actual normalized variance for the measurements is

From equation (69), the ratio of the actual to expected normalized variance is

A

E2
R

E --'-- 'E'_
= 1.15



, iS not significantlyReferring to equation (70) and Figure 61 itis clear that R e

differentfrom unity at the _ = 0.05 level of significance. Hence, there is no

reason to believe thata periodic component is present or that the signal is

nonstationary. The signal may be considered both random and stationary.

The measurements used in numerical example (c) are taken from

Section 16 of Reference 21, and are actual power spectra/ density measure-

ments for a truly stationary random signal, as indicated by the above test.

follow:

Now assume that the resulting measurements for the test were as

Data for Example (d)

A

Power Spectral Density Measurements G t, volts2/I-Iz

2.33 1.24 O. 96 2.63

2.03 I. 40 I. 60 2.25

2.12 1.24 i. 37 2.06

I. 88 1.22 i. 10 2.42

2.20 1.42 1.03 2.27

i. 90 I. 40 1.62 3. O0

2.36 I. 39 I. 24 2.40

2.61 1.70 2.18

From equation (66), the actual normalized variance for this set of measure-

merits is

A
¢2 = O. 090 .

From equation (69), the normalized variance ratio is
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R =2.7
E

Referring to equation (70) and Figure 61, it is clear that R c is significantly

greater than unity for the c_ = 0.05 level of significance. Hence, there is

reason to believe the sampled vibration response is nonstationary.

The measurements used for numerical example (d) _re taken from

Section 16 of Reference 21, and are actual power spectral density measurements

for a nonstationary random signal, as indicated by the above test. Specifically,
the measurements were obtained from a random signal whose true mean square

value changed m 20 percent relative to an average level (a change of _ 10 per-

cent in the rms amplitude). The rms amplitude of the signal was 10 percent

high for the first eight measurements, 10 percent low for the next 15, and

10 percent high for the last 8.

2. NONPARAMETRIC TEST FOR STATIONARITY

This test for stationarity is also based upon an investigation of the

scatter or variability of mean square measurements. However, it is only con-

cerned with the number of "runs" which occur in a collection of measurements,

and does not require a knowledge of the actual sampling distribution of the

measurements. Thus the test is nonparametric.

Assume that a collection of N number of statistically independent mean

square values are measured from sampled vibration data. Let the median value

of the measurements be determined; that is, the value for which half the

measurements are larger and half are smaller. Furthermore, let each meas-

urement that is larger than the median be identified by (+) and each that is

smaller than the median be identified by (-). Now arrange the (+) and (-)

identifications for the measurements in the proper time sequence.

For example, the resulting sequence for 20 measurements might be as
follows:

_++ - + ¢._ _ - + _ + v__ +

1 2 3 4 5 6 7 8 9 I0 ii 12
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A "run" is defined as a sequence of identical symbols which is followed and

proceded by a different symbol or no symbol at all. In the above example
the number of runs is 12. The total number of runs in a collection of indepen-

dent measurements obtained at different times gives an indication as to

whether or not the quantity being measured is stationary. If very few runs

occur, a time trend is indicated. If a great many runs occur, systematic

short period fluctuations are indicated.

The application of run theory as a test for stationarity presents three

important advantages not afforded by the variance test discussed in Paragraph

B. 1. of this section.

lo A knowledge of the frequency bandwidth of the signal under

investigation is not required.

o A knowledge of the exact averaging time used to measure the

mean square values is not required. Futhermore, there are

no restrictions on how long the averaging time should be.

o It is not necessary for the signal under investigation to be com-

pletely random. Valid conclusions are obtained even when

periodic components are present in the signal, as long as the

fundamental period is short compared to the averaging time

used for each mean square measurement.

The above advantages clearly illustrate the broad and simple appli-

cability of the test to vibration data. Actually the test can be applied to a

sample record with nothing more than a simple square amplitude detector,
such as a true rms voltmeter. No filter or detailed analysis is required.

The step-by-step procedure for applying the test is as follows:

. Obtain a collection of broadband mean square measurements by

averaging over each of N number of segments of a sample record.

The averaging time for each measurement is of no concern. If

averaging is accomplished by continuous smoothing with a low

pass RC filter, the resulting continuous mean square measure-

ment time history can be reduced to a collection of discrete

mean square measurements by the procedures illustrated in

Figure 59.
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. Determine the median of the mean square measurements; that

is, the value for which half the measurements are larger and
half are smaller.

1 Identify each measurement that is larger than the median by (+)

and each that is smaller than the median by (-).

. With the (+) and (-) identifications for the measurements

arranged in proper time sequence, count the number of runs.

. If the number of runs is either too small or too large, the sample

record being investigated is considered to represent a nonstation-

ary vibration response. Otherwise, the sample record is con-

sidered to represent a vibration response which is stationary.

The criteria for deciding if the number of runs are too small

or large is tabulated in Table 6 for various values of N and the

level of significance _.

Numerical Example:

Let the data gathered for the numerical examples in Paragraph B. 1.

of this section be tested for stationarity by application of the run test at the

= 0.05 level of significance.

First consider the measurements presented in Example (c). The
^

median value for these measurements is G = 2.30 volts 2/cps. That is, there

are 15 measurements with a value greater than 2.30 and 15 measurements

with a value greater than 2.30 and 15 measurements with a value less than
2.30. The number of runs in the 31 measurements when considered in a

proper time sequence is 16, as shown below:

2.25 5

l° 78

2.26
6

2.07

1.91

2.85 7

2.00

2.45 8

2.19 { 2. O03.20 9 2.23

2.30 10 3.05

2.86 11 2.15

2.68 12 2.36

2.15 13 I 2.03

2.54 2.O02.32 14 2.57

15

16

2.21

1.47

2.44

3.28

3.27

2.49

3.4:;
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TABLE 6. RUN TEST FORSTATIONARITY

= 0. i0 _ = 0.05 _ = 0.01

N lower upper lower upper
limit limit limit limit

8 3

i0 4

12 4

14 5

16 6

18 7

20 7

22 7

24 8

26 9

28 iO

30 ii

32 il

34 i2

36 13

38 14

40 i5

50 19

60 24

I

7 3

9 4

i0 4

Ii 5

12 6

14 7

16 7

17 7

18 8

19 9

20 I0

22 Ii

23 ii

24 12

25 i3

26 i4

32 18

37 22

upper lower
limit limit

8

9 3

ii 4

12 4

13 5

14 5

16 5

18 6

19 7

20 7

21 8

22 9

24 i0

25 i0

26 ii

27 i2

33 i6

39 20

a

m

I0

Ii

13

14

15

18

19

20

22

23

24

25

27

28

29

35

41
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Referring to Table 6, it is clear that the number of runs is within the range
expected for measurements from a stationary signal at the _ = 0.05 level of

significance. Hence, there is no reason to believe that the sampled vibration

response is nonstationary. This is a correct conclusion for the data presented
in Example (c).

Now consider the measurements presented in Example (d). The median
A

value for these measurements is G = t. 88 volt 2/Hz. The number of runs in

the 31 measurements when considered in the proper time sequence is 3, as
shown below :

2.33

2.03

2.12

1.88

2.20

1.90

2.36

1.24 0.96

1.40 t 1.60

1.24 1.37
1.22 2 1.10

1.42 1.03

1.40 1.62

'1.39

2.18

2.63

2.25

2.06

2.27

2.27

2.40

Referring to Table 6, it is clear that the number of runs is less than expected

for measurements from a stationary signal at the a = 0.05 level of significance.

Hence, there is reason to believe that the sampled vibration response is non-

stationary. This is a correct conclusion for the data presented in Example (d).

Note that the data used for the numerical examples in this section

involve relatively large measurement uncertainties. This is done to illustrate

how the tests for stationarity are applicable even for data with considerable

statistical scatter. Because of the scatter, the fact that the data for Examples

(c) and (4) are stationary and nonstationary, respectively, is not immediately

obvious by observation.

C. Determination of Data Equivalence

The evaluation of a flight vehicle vibration environment will involve the

collection and analysis of many different sample records. These sample rec-

ords would be gaChered as a function of several different variables to obtain

appropriate vibration response profiles. For example, a collection of sample

records might represent the vibration response for a number of different

times during a flight. Hence, the vibration environment can be evaluated

as a function of time and struct_,ral location. In a similar manner, sample
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records might be collected from either or both repeated flights of the same
vehicle and flights of different vehicles of the same type. For this case,
the specific flight or specific vehicle or bothwould also be variables in the
dataanalysis.

In any case, anearly step in the evaluation of the data shouldbe an in-
vestigation for areas of equivalence, so that the number of variables needed
to describe the vibration environment can be reduced to a minimum.

As one example, assumethe vibration data measured for different
flights of a vehicle is not significantly different from flight to flight. Then,
the specific flight can be eliminated as a variable in the description of the
vibration environment. The sample records obtained for different flights can

be pooled together and the vibration environment for the flight vehicle can be

described by one set of properties which are applicable to all flights.

For a second example, assume the vibration data measured at various

points in a specific structural zone of a vehicle are not significantly different

from point to point. Then, the specific point in that zone of the vehicle may be

eliminated as a variable in the description of the vibration environment. The

sample records obtained for different points in that zone may be pooled together
and the vibration environment for that structural zone of the flight vehicle may

be described by one set of properties which are applicable to all points in that

zone.

Note that the presence or absence of time as a variable determines

the stationarity of a vibration response. As described in Subsection B of this

section, a stationary vibration response is one whose statistical properties

do not vary with time; equivalent. The procedures in Subsection B. of this sec-

tion for verifying stationarity are simply tests for the equivalence of measure-

ments obtained at different times. Those same procedures can just as well be

applied to determine the equivalence of measurements obtained at different

locations or on different flights or on different vehicles. However, when a
collection of measurements is available which involves two or more variables,

there are more powerful statistical procedures for establishing the significant
effects of two or more variables simultaneously. These procedures are known

as "analysis of variance, " and are described in this section.

The two most important variables in the description of a vibration

environment are usually time and structural location. Any reduction in the,
number of different times and locations needed to describe a general vibration

environment is clearly desirable. As discussed in Subsection B. of this section,

the determination of stationarity may be limited to an examination of mean
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square value meansurements, for most practical cases. For the same general

reasons, the equivalence of vibration data at various structural locations may

also be based on an investigation of mean square value measurements, at least

for purposes of preliminary evaluation. Hence the following discussions are

written assuming that time and location are the variables of interest and that

a mean square value is the measured property which defines the vibration

environment. However, the general analysis of variance procedures is valid

for any measured quantity as a function of any desired variables. In all cases,

a requirement is the assumption that the measured quantities in question are

normaUy distributed, or that the measurement errors about some true constant

value are normally distributed.

A full discussion on these analyses of variance procedure s appears in
Section 8 of Reference 21. The material to follow here summarizes some of

these procedures and illustrates them with a computational example.

i. ANALYSIS OF VARIANCE PROCEDURES

Basic mathematics for the analysis of variance procedures is as follows.

Suppose two sample means x 1 and x 2 are available where

N

= 7 xi.j ;i=1,2 (71)
xi j_'=l

the index i= 1,2 representing two different sets of experiments in each of which

j = 1, 2,..., N measurements are made. Thus xlj and x2j represent the N sample

values in each experiment.

If it is assumed that the underlying populations are normal, and that the

sample variances s _ and s 2 are estimates of common variance, then the2
variable

t = _ (72)

has a "student's t" distributionwith (N-i) degrees of freedom (dr). The sample

variances are defined by their unbiased estimates
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N

s.2 -- i=l • i= 1,2 (73)
I N-l '

Note that the number of clf= (N-l) is used as a divisor rather than the sample

size N. This fact allows a two-tail at the cz level of significance by comparing

t from equation (72) with a tabulated value of tl_cz/2(N-1),. If a test among

several means .xi' i = 1, 2..., k is desired, the situation becomes more com-

plex. All possible combinations of the sample means could be tested, although

the level of significance becomes open to question.if any combinations fail the

test. The analysis of variance procedures offer a solution to this problem.

a. The One-Way Fixed Effects Model

The analysis will now be presented in terms of its simpliest form.

Assume for example that N measurements of vibration data from each of k

points from some Right are available, and that the collection of data is all

obtained in a short period of time under identical conditions. It is now desired

to test whether the k sample means are all statistically equivalent estimates

of some common population mean value _. That is, the hypothesis is

_zi = /a2 =... -_zk =
(74)

where/_i represent the respective true mean values. This hypothesis may be

cast in a slightly different but equivalent and sometimes more useful form.

Consider each observation to be of the form

j = 1,2,...,N

xij =/a+ _i + Eij ' i = 1,2,...,k (75)

where _ is the overall mean value, _ i is an effect due to the ith location and

E.. is an "error" term assumed to be normally distributed with zero mean and
1j

variance o_. In this model the hypothesis becomes
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q) l = @2 =''' = (Ok= 0 (76)

The basis for the test of the hypothesis arises from the fact that two independent

estimates of the variance 02 may be calculated from the data if the hypothesis

is true.

The first of these estimates is obtained from the "within group" var-

iation. That is, define

v

k
I s 2.

i=l

(77)

which is the average of the k sample variances. This is an unbiased estimate

of o2 whether or not the hypothesis of equal means is true.

A second estimate is now obtained from the "between group" variation.
Define

k

(xi - x)2
i=l

MS 2 = N k - 1 (78)

where this estimates the population variance as N times the variance of the

sample m_ans and _" is the mean of the k sample means

k

x = (l/k) _ x i .

i=l

Equation (78) is based on the relation '

(79)

186



where _2 is the variance of the distribution of sample means computed from
x

samples of size N drawn from a population with variance g2. The variance

estimate given by equation (78) will be an estimate of ¢2 if the hypothesis

(76) holds. However, if there is a contribution due to nonzero values _ i'

then this variance estimate will be enlarged because of this effect. It can

be shown that the variance ratio

F = MS2 (80)

has an F distribution with (k-i) and N_k-l) dr. Since the estimate MS 2 can

only be larger than MS1, a one-tail test at the _ level of significance may be

performed by comparing F from (80) with FI_ a (k-l, N [k-l]) obtained from

a table of the F distribution; that is, if

F < F (k-i, N [k-i]) , (81)
Ot

the hypothesis of equal means is accepted. The term "fixed effects" stems
from the fact that it is assumed that only the effects of k specific fixed points

are of interest.

b. One-Way Random Effects Model

In contrast to the fixed effects model, if it is desired to test the hypo-

thesis that the vibration in some extended area of a flight vehicle is the same,

then one would select k points at random from this general area. The model

is written the same; that is,

xij I_ + _i + E..ij

but in this case the _ i are assumed to be k observations of a random variable

with zero mean and variance _ . The hypothesis now is slightly altered and

becomes
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although the computing procedures and the F ratio remain identical.

c. Two-Way Mixed Effects Model

The specific procedure for the simultaneous test for stationarity
and test for equivalence among locations is now presented. Assume that

the time period of interest has been subdivided into a large number of small

intervals and that r of these intervals have been randomly selected. Also,

assume that at each of c specific locations of interest, data is collected during
these r intervals. In addition, it is assumed that each of these intervals is

stationary and represents a sufficiently long period from which to obtain N

independent observations. The data rhay be conveniently represented as in

Table 7. Note that in each cell of the table there are N data values giving a
total of Nrc observations.

TABLE 7. VIBRATION DATA LAYOUT FOR TWO-WAY

ANALYSIS OF VARIANCE

• •

r

Location

l 2

Xliv Xl2v

X21v x22 v

Xilv xi2 v

Xriv Xr2 v

• • • C

Xlcv

X
roY

v= 1,2,...,N

r = number of rows (times)

c = number of columns (locations)

A slightly modified notation for mean values will now be adopted. The symbol

x--ij" will r_.present an average taken over the values represented by the sub-

script replaced with a dot; that is, as

N
-- 1

xij" = N xijv
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It is now assumed that each cell represents a sample of size N from

rc separate populations, each normally distributed about a mean/_., and with
1j

a common variance a 2. The model becomes

Xijv = _ij + _ijv " (83)

However, the #ij is postulated to consist of a time effect gi' a location effect

and a possible interaction effect eij. The interaction may arise since the

joint effect of the two variables taken together may differ from the sum of their

separate effects. However, in many particular physical applications, it is

unlikely that a significant interaction exists. The location effects h. are assumed
J

to be due only to the c specific fixed locations; however, the time effects gi

are assumed to be r observations of a random variable with zero mean and

2. Substituting these terms for/_ij' equation (83) becomesvariance ag

Xijv = # + gi = h.] + Oij + eij v (84)

where all the factors are considered as deviations from the overall mean

value _.

The method for constructing the test of the hypothesis for the one-way

analysis of variance still applies in principle to the two-way analysis. One
obtains a variance estimate from between locations (columns) variation, an

estimate from between times (rows), an estimate from interaction, and finally

a within group (or within cell) estimate. Various F tests may then be devised

to check the statistically significant interaction effects, locations effect, and

time effect. The F ratios are constructed by choosing variance ratios in

which the numerator will have a larger expectation than the denominator if the

effect being tested for exists (i.e., is nonzero).

The within group mean square is given by the average of all the cell

sample variances. That is,
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r c

MS 1 = 1rT
i=i j=i

m

rc (N-i)

r c N

z ,"= 1 =1 xi-

(85)

N

sij2 = N----_I E (Xijv -- x_. ) . (86)
v=i -j

This quantity given an unbiased estimate of o-2; that is, its expected value is

o-2 regardless of whether or not any of the effects are nonzero.

The between locations (columns) variance estimate is

C

MS 4 = _rN j_.'l
c-I (x.j.- x...)2 ;

"_

(87)

that is, each column mean is based on rN observations, hence the factor rN

for estimating an underlying population variance from a sample variance based
on means computed from rN observations. This variance estimate will have

an expected value of o-2 ff no column effect exists, but otherwise will have an

expected value, E (MS4) , given by

C

E(MS 4) = o-2 + NO- + c--'-_"=i 1

2 is the variance attributed to interaction ff itIn equation (88), the term o-_

exists, and the h. are fixed column effects if any exist.
J

The expression for the between times (rows) variance estimate is

entirely analogous. Thus

r

r-lCN _ (x. -x )2 (89)MS3 - "=1 z.....
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The expectedvalue, E (MS3), of the between rows variance estimate is given by

E(MB 3) = a 2 + Nc a 2 . (90)
g

The interact on sum of squares is obtained by considering the identity

X-vii- x = (_ij. - x.1.. - x .j. + x ) + (xi. - x )
omm • el.,

+ (x . 'x ) + (x.. -x.. ) . (91)
.].... 1]v ijv.

The sum of squares corresponding to each of the last three terms in equation

9.27 have already been accounted for by equations (85), (87), and (89). The

interaction mean square is therefore

r c

x_ - - -i i_ j_ ( _x. _x . + x )2 . (92)1V_2 = (r-l) (c-l) "=1 "=1 . 1.. .j ....

This expression can be shown to have an expected value of a 2 if there is no
2. that is,interaction effect, but otherwise will be increased by the factor Nao,

E(MS 2) = cr2 + No_ . (93)

All the foregoing equations are summarized in the analysis of variance table,

Table 8.

By inspecting the expected mean square values, the various F tests are

seen to be as follow:
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Variance Ratio df for F

(a) Locations : F = MS4 (c-l,[r-1][c-1])
MS2

(b) Times : F =
MS I (r-l, rc [N-I] )

(c) Interaction : F = MS2
MSt

([r-l][c-l], rc[n-l])

The various hypotheses are accepted at the _ level of significance if the

computed F is less than the appropriate tabulated value of F 1-_ (m, n) where

M and n are the df as indicated above.

d. Computational Procedure

The quantities given in Table 8 are more conveniently calculated by

the following equivalent computational procedure:

1. Calculate within cells totals W.. where
1]

N

=1 xijv;

2. Calculate row totals R. where
1

C

Ri = "j_l wij
; i=l, 2, ..., r

o Calculate column totals C. where
]

r

C.=1_ W i "] =1 j,j = 1,2,...,c
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4. Calculate .,erall total T:

r c

1 ..=, 3

o Calculate "crude" total sum of squares (i.e., the original values

squared as opposed to d eviations from an appropriate mean value

squared).

r c N

1"= 1 =1 ijv

o Calculate the correction factor due to the mean for transfomiag

crude sums of squares to squared deviations about an appropriate
mean value

r 2
CF-

rcN

o Calculate crude between column sum of squares

C

c-".
CSS4= r-_

j=l :]

o Calculate crude between row sum of squares

r

1CSS3 = cN =t

9. Calculate crude within cell sum of squares

r c
1 2

j =I D
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I0. Calculate between column sum of squares

SS4 = CSS 4 - CF .

11. Calculate between rows sum of squares

SS3= CSS 3 - CR .

12. Calculare total sum of squares

SS T = CSS T - CF .

13. Calculate within cells sum of squares

SSI= CSS T-CSS w .

14. Calculate interactionsum of squares

SS2 =SS T - SS 1 - SS 3 - SS 4 .

15. Calculate mean squares

MS I = SSl/rc(N-l)

MS 2 = SS2/(r-I) (c-l)

MS 3 = SS3/(r-l)

MS 4 = SSj(c-l)

if

The hypothesis of stationarity is accepted (at the _ level of significance)
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F =MS3 < Fi (r-l, rc[N-l])MS 1 -_

if
The hypothesis of no difference between the chosen locations is accepted

F _ < (c-1, [r-l] [c-1]j
= MS 2 FI-_

tested.

action.

The hypothesis of no interaction between time and location may also be

In many problems there is no physical reason to suspect any inter-
This hypothesis is accepted if

F= MS2 <F
lye1 .l__([r-l] [c-l], rc[N-1]j

2. COMPUTATIONAL EXAMPLE

The data listed in Table 9 represent actual experimental results

outlined in Reference 21. The data are taken from a nonstationary process
and the different locations represent repetitions of the experiment.

As can be seen from the data, r = 5, c = 5, and v = 3 for this example.
Therefore, rcN = 75 for the total number of observations. Since the data

involved here are nonstationary but equivalent from location to location, the

hypothesis of stationarity should be rejected and the hypothesis of no difference

between locations should be accepted. Also the hypothesis of no interaction

between time and location should be accepted.

The calculations will now be performed in the exact sequence given in
Paragraph C. 1. d. of this section.

1. Within cells totals

Wll = 8.34 Wl2 = 7.76 W_3 = 7.29 Wl4 = 7.70 . Wl5 = 6.74

W21= 9.00 W22=7.47 W23=7.72 W24=7.44 W25=6.26
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,

o

o

.

1

7_

o

e

W31= 7.21 W32= 8.58 W33=6.72 W34:7.41 W35= 9.01

W41= 5.28 W42= 5.85 W¢3= 5.16 W44=6.16 Wts= 6.74

W51= 6.06 W52= 6.56 W53= 5.95 W54= 5.69 Ws_= 5.44

Row totals

R|= 37.83 R 2=37.89 1_s=38.93 1_4=29.19 R 5= 29.70

Column totals

C 1=35.89 C 2=36.22

Overall total

T = 173.54

Crude total sum of squares

CSS T = 420.0338

Correction factor due to mean

CF = 401. 5484

Crude between columns and squares

CSS 4 = 402. 0508

Crude between row sum of squares

CSS3 = 407. 7635

Crude within cell sum of squares

CSS W = 411. 5505

C3 = 32.84 C4 = 34. 40 C 5 = 34.19
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10. Between columns sum of squares

SS 4 = 402• 0508 - 401. 5484 = . 5024

11. Between rows sum of squares

SS 3 = 407. 7635 - 401. 5484 = 6. 2151

12. Total sum of squares

SS T = 420. 0338 - 401. 5484 = 18.4854

13. Within cells sum of squares

SS 1 = 420.0338 - 411. 5505 = 8. 4883

14. Interaction sum of squares

SS 2 = 18. 4854 - 15. 2008 = 3. 2846

15. Mean squares

8. 4833 6. 2151 •
MSl= 50 - .16967 MS 3 =_ - 1.5538

3. 2846 .5024
MS2 = 1----_ - .20529 MS4 - 4 - . 12560

18. 4854
MST = 74

The results are displayed in Table 10.

Three values from a table of the F distribution are now necessary.

The hypotheses will be tested at the c_ = 5 percent level of significance. These

values are F 95 (4,50) =2.57, F 95 (4,16) =301, andF 95 (16,50) = 1.86.
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TABLE 10. RESULTS

Source

Between

Locations

1VI_an
Sum of squares df

Square

.5024 4 .12560

Between

Times 6.2151

Interaction 3.2846

W_hin

CeHs 8.4833

Total 18.4854

1.5538

16 .20529

50 .16967

74 .24980

Expected

Mean Square

5

2 + _.15j___ h.22 + 3cre i )

O.2

Test of hypothesis of stationarity:

F= MSs = 1.5538 = 9.1578 >F (4,50)
MS 1 .16967 .95

= 2.57

Since the computed Fib larger than F 95 (4, 50), the hypothesis of stationarity

is rejected at the 5 percent level of significance.

Test of hypothesis of no difference between locations:

F= MS4 = .J.2560 = .61182< F 95 (4,16)=3.01.MS 2 .20529

Since the computed F is smaller than F 95 (4, 16), the hypothesis of no
e

difference between locations is accepted at the 5 percent level of significance.
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Test of hypothesis of no interaction between time and location:

F= MS2 _ .20529
MB 1 .16967 - 1.2099 < F.95 (16,50) = 1.86

Since the computed F is smaller than F 95 ( 16, 50), the hypothesis of no inter-

action between time and location is accepted as expected at the 5-percent level

of significance.

This concludes the computational example.

D. Interpretation and Application of Amplitude
Probability Density Functions

I. FIRST-ORDER PROBABILITY DENSITY FUNCTIONS

The first-order probability density function is defined in Section VIII.

B. 2 but will be repeated here for convenience. The general definition of a

continuous probability density function in statistical terms is as follows.

Let r = r (_) be a continuous random variable which is defined as a real valued

function of _ where the behavior of _ is determined by chance. A (first-order)

probability density function, Pr(X), is defined by the condition,

Pr(X) dx =Prob [x< r (a) <x +dx] (94)

where x is a specific value of the random variable r. The probability density

function Pr (x) shouldnot be confused with the (cumulative) probability dis-

tribution function Pr (x) which is related to Pr(X) by the equation

X

Pr (x) = f Pr (t) dt . (95)
-- aO
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For the case of a stationary random process, consider a single repre-

sentative member, x(t), of this process as follows:

x(t

I
I I l I I I I I

, tl _-! _1 t2 _ -_1t31"-'| "'lt4_-I,
I I I I I I I I

_.11 I I ..,_ I I
I I f _ I _ _

x+_x , f _ i I V _. I
J N / f

_t
T

An estimate of the probability that x(t) assumes particular amplitude values
between x and (x +/x x) for a record of finite length T may be obtained from

the ratio At/T where At is the total time spent by x(t) in the range (x,x + _x).

In equation form

k
i At

Prob [x <x (t)< x +Ax] _ =_-._, t.=--
-- 11= 1 T

(96)

where t.is the time spent by x(t) inthe range (X,X+AX) during its ithpassage
,

through this range. Ifone replaces x (t)by R to distinguishbetween the ran-

dom variable R = x(t) and a special value x, then for small Ax one can define

a (first-order) amplitude probabilitydensityfunction p(x) such that

Prob [x <R-- x + Ax]= p(x) Ax . (97)

Itis understood that p(x) in actualityalso depends on R but this dependence

isnot noted inthe interest of simplicity.

More precisely, one defines p(x) by the limiting operation
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p (x) =lira Pr°blx < R-_x +Ax] = lim
Ax

AX -*0 Ax-*0
¥ .

(98)

In actual measurements one only works with finite T and nonzero Ax so that

only the estimate given byequation 9.32 is obtained which contains associated

statistical errors. (See Section VIH.D. 1. for a discussion of these problems. 7

In terms of p (x), the mean value of x (t) is given by

oO

7¢= f xp(x7 (99a7

The mean square value is

oO

x 2 = f x2p (x7 dx ( 99b7

while the variance, or second moment about the mean, is

oO

a 2 = f (x-_) 2
X

oOO

p (x7 dx = x 2- Cx72 (1007

The positive square root of the variance is called the standard deviation.

Moments about the mean (central moments7 of order higher than the second

are defined in an exactly analogous way. If all moments of a probability

distribution are known, then the distribtuion is completely specified. The

amplitude probability distribution function is defined using equation ( 957.

a. Special Distributions

The application of amplitude probability density functions lies in the

fact that if the function is completely known, certain probability statements of
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interest may be made which state where the amplitude of a signal may be

expected to lie. Certain special density functions often occur in practice

which allow quantitative probability statements to be easily made. Three
of these will now be discussed.

1. Uniform (Rectangular) Distribution

One of the simplest probability density functions is the uniform or

rectangular function. A random variable R is said to follow a uniform (or

rectangular) distribution over the interval (a < x < b) if its probability

density function is given by

a_x_<b

otherwise (lol)

See the drawing below.

b-8

o a b

The mean _ and variance a 2 of this distribution are

a+b
- 2 (I02)
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2. Normal (Gaussian) Distribution

The Gaussian probability density function is defined by the equation

1
p(x) - e (103)

and has a mean value /_ and variance a 2 An important feature of this dis-

tribution is because it is completely characterized by its mean and variance

since it may be shown that all higher moments are functions of the first and

second. Probability statements are made in terms of the mean and standard

deviation. For example, if/z and a are known, then

Prob [x > /_ +3a] _ .00135 . (104)

The normal distribution is tabulated in almost any statistics book. Since

the mean and variance completely describe this distribution, if a set of experi-

mental data may be assumed to be normally distributed, an estimate of the

mean and variance obtained from this data is all that is needed to specify the
distribution. A picture of the Gaussian probability density function appears
in Section XIV.

3. Rayleigh (Radial Normal) Distribution

The Rayleigh probability density function is given by

p(x) =/"

(x/v2) exp (-x2/2v 2) x_>0

0 , x<0

(105)

This distribution is completely characterized by the parameter v. The mean of this
1

distribution is (_/2) 2 v while the variance is v _-(4-_)/2. The Rayleigh prob-

ability density function is not widely tabulated. However, the Rayleigh prob-

ability distribution function is simply an exponential function which is available.

A picture of the Rayleigh probability density function appears in Section XIV.
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B. Applications

i. Tests of Assumptions

A major reason for experimentally obtaining an estimate of an amp-

litude probability density function is to verify that some useful assumption

about the theoretical form of the distribution is correct. For example, the

assumption of the existence of a normal distribution is very often invoked in

obtaining simple useful theoretical results. A plot of the amplitude density

function can provide a visual, "quick look," verification of this assumption

if the plot follows the symmetrical, bell-shaped form characteristic of the

Gaussian density function. A quantitative method for more precisely testing

this assumption based on the analog plot of the density function and the statis-

tical errors associated with the measurements is given in Section 17 of Ref-

erence 21. If the data are available a digital form, the chi-square test

described in Section XIV. F provides an alternate quantitative method. Just

being able to visually determine if the densityfLmction is unimodal (i.e., has

a single peak) and monotonic on either side of this mode allows certain prob-

ability statements to be made. See Section 6.2.3 of Reference 20.

2. Range of Expected Variations

If a well-known density function can be assumed to properly fit the

experimental data, then probability statements can usually be made in terms

of the mean and standard deviation. However, if the data do not seem to be

well represented by some theoretical distribution, then the probability state-

ments may have to be derived directly from the observed density function.

For example, assume some piece of equipment must be mounted on a

structure and relatively little clearance will be available. Also suppose that

the structure will be subjected to random vibration and that amplitudes that

would cause contact of the equipment with the surrounding equipment are unac-

ceptable. It is then desirable to be able to estimate the probability of ampli-

tudes occurring at any given instant which are great enough in magnitude to

cause this contact. An experiment with the structure should then be performed

and an experimental estimate of the amplitude probability density function

obtained. If c is the amplitude that must not be exceeded, then one desires the

probability

P(x <c)= fp(x) dx . (106)
C
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If this number is very small such that the probability of contact at any given
instant is minimal, no further action is necessary. However, if the probability
of contact is unacceptablylarge, corrective action must be taken. The proba-
bility given by equation (106) is over-simplified becausean uncertainty in the
estimate of the density function exists. This uncertainty is given by equation

(25) and must be allowed for in an engineering application.

An exact analogous sittmtion occurs if a piece of equipment is to be

placed on a resilient mount and either bottoming of the mount is unacceptable

or large enough amplitudes to cause striking of nearby equipment or structures

is catastrophic. The procedure is precisely the same as described in the
preceding paragraph and the amplitude probability density function is the crucial
information.

Note, that for both the above applications, the probability statements

axe good for only a given instant of time. Other statements about the probability

of exceeding a certain value within a certain length of time (e. g., a flight of T

seconds) may be made if the distribution of extreme values of amplitude is
considered.

3. Probability of Exceeding Specified Level

Narrow frequency bandwidth random vibration responses are character-

isti¢ of lightly damped structural systems with a single predominate mode of

vibration; that is, single degree-of-freedom systems. For example, the res-

ponse of a resiliently mounted piece of equipment to broad band random excita-

tion will produce a narrow bandwidth random vibration response of the entire

equipment on the mounts. The center frequency for the response will be the

resonant frequency for the mounted equipment. Very often, continuous elastic

structures may also be treated as a single degree-of-freedom systems for

purposes of analysis to obtain approximate results for various dynamics

problems. These matters are developed further in Paragraph F. of this

section. It is only necessary to note here that a narrow frequency bandwidth

vibration response is common in many engineering problems.

If the probability density function, p(x), for a narrow frequency band

response (output) is known, and if the instantaneous amplitude and velocity.

are assumed to be statistically independent, then the probability density function

of the peak amplitudes, pp(X), may be computed [23] from the formula
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-p' (x)

pp(X) - p(O)
(107)

More directly, the probability of exceeding a critical peak amplitude, ac, is

given by the equation

GO

P (ac) = f dxP pp (x)
a

c

= Prob [positive peak value _> ac]

P (a c)

p(O) a
(108)

If the frequency of a narrow band random vibration is fr' the expected

number of times that a peak with an amplitude greater than a will occur
c

per second is

= _ f (109)
a a r

Hence, the mean time between peaks (MTBP) with an amplitude greater than

a is
c

1
MTBP - (110)

af
ar

If the occurrence of a peak greater than a is expected to be damaging, thenc

it is clear that the MTBP for the critical peak amplitude should be very long.
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To illustrate these points, consider the case of a resiliently mounted

piece of equipment located in a flight vehicle where space is limited. The

problem is to determine how much distance must be allowed between the equip-

ment and the neighboring structure to minimize the likelihood of a collision.

Assume that the resiliently mounted equipment is a single degree-of-freedom

system (not necessarily linear) with a resonant frequency of about f = 20 Hz.r

Further assume that the vibration response displacements of the neighboring

structure are negligible compared to the response displacements of the equip-

ment. A model for the problem is shown below.

FOUNDATION

INPUT
. x(t) ,

a
c

Now assume that the response displacement for the equipment has an

rras value of 0.635 cm (0.25 inch) and a probability density function of the

form shown below.

p (x)

0.4

0.3

0.2

-X

0.38

I

0 0.635 1.27 1.905 2.54

DISPLACEMENT (cm)
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As seen from the drawing, the height of the probability density function x = 0

is p(0) = 0.38. From equations (108) and (109) the height of the probability

density function at the critical displacement a is given by
C

P(ac ) = (_aP(0) _ p(0) 0.019(MTBP) f - M'rBP
r

where MTBP is the desired mean time between collisions in seconds.

The desired value for MTBP is a function of the total time which the

equipment is exposed to vibration. Assume for this example that the flight

vehicle is a missile where the total exposure time to pertinent vibration is 5

seconds. Further assume that an MTBP of 10 times the total exposure time
is considered acceptable. Then, the desired MTBP is 50 seconds and the

necessary value for P(ac) is

p(a c) = 0.00038.

The critical displacement a may now be obtained directly from the probabilityc

density plot for the response displacement associated with a probability density

of p(a c) = 0.00038.

It should be noted that the actual measurement of probability density

functions at extreme amplitudes involves a great deal of statistical uncertainty

unless long experiments are performed. The accuracy of probability density

measurements is discussed in Section VIII. 0.1. In the drawing shown before,

the final solution to the problem requires the determination of a displacement
amplitude with a specific probability density based upon measured data. In

reality, the resulting value for a would have confidence intervals associated
C

with it because of the statistical uncertainties in the measurement of p(x).

4. Fatigue Problems

Metal fatigue considerations also involve a direct application of the

amplitude probability density function. In this case, amplitude is related to a

stress level which in turn is related to fatigue damage. The application of
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Miner's Rule is the usual methodwhich essentially states that fatigue life is
usedup proportionately at the various stress levels. That is, if 10000cycles
result in failure at stress level a1and 20 000cycles result in failure at
stress level a2, theneither 5000cycles at level a1or 10000cycles at stress
level a2would use 50percent of the fatigue life of the metal. Actually, the

probability density function for peak amplitudes is critical for this problem.

This is in fact one of the major applications of the Rayleigh distribution since

it may be shown that a narrow band response with a Gaussian probability density

functionfor its instantaneous amplitudes has a Rayleigh probabilitydensity

function for its peak amplitudes. The fatigue problem is treated in greater

depth in Section 9 of Reference 20.

2. JOINT PROBABILITY DENSITY FUNCTIONS

Consider a pair of records R = x(t) and S = y(t). Also consider the

pair of events that R falls in the interval (x, x + AX) and, simultaneously, S

falls in the interval (y, y + Ay). The joint probability for the occurrence of

these two maybe estimated by determining the fraction of time per unit time

that these two events coincide. For records of finite length T, this estimate

is given by

At
Prob[x<R --<x +Ax, y <S -< y + Ay] _ T

(111)

where At represents the amount of time that these two events coincide.

The joint probability density function p(x, y) is then defined by the
condition

Prob [x <R--< x AX, y <S --<y+Ay] _ p(x,y) Ax_y (112)

The exact value is obtained by taking limits; that is,

p(x,y) = lim

A x ---0

A y--0

Prob[x <R - x + AX, y < S -< y +Ay]

(Ax) (Ay)

(113)
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At
p(x,y) = lira lira (114)

Ax-.-0 T--.-_¢ R(Ax) (Ay) "

A y--*-0

It must be kept in mind that, in practice, T is finite and Ax, Ay are nonzero
so that only an estimate of equation (1t4) is obtained which has associated
statistical uncertainties.

Application:

Analogous to the single variable case, the probability of x(t) exceeding

the level _ and y(t) exceeding the level fl may be given by the relation

Prob [x > _, y >/_]

oO oO

=f/p
P

(x, y) dx dy . (115)

Joint density functions require much more effort to calculate and have not

been widely applied in engineering practice. However, the applications for

the single variable case can be easily extended.

Consider the example for first order density functions where one wants

to evaluate the chance of a resiliently mounted piece of equipment contacting

an obstructing structure when its mounting is randomly excited. Suppose the

problem is extended to two pieces of equipment resiliently mounted and facing
each other. See the drawing that follows.

FOUNDATION

NO. 1

J_

INPUT _-_ xlt)

___T EQUIP"

MENT

NO. 1
,, J

I! IL

y(t) : INPUT !

EQUIP- _

MENT I __

NO 2 I_"

FOUNDATION
NO. 2
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The probability desired here is that x + y exceeds a. This is given by

a a-y

Prob[x+y >a] = i - f f p(x,y)dxdy (i16)
=OO --OO

The double integral is taken to the left of the line x + y = a. This would have

to be evaluated numerically ifthe density function is given as experimental

results. Even ifthe density function was available in analytical form, the

integration may have to be performed by numerical methods.

The lower limits of the integral in equation (116) are written as - oo.

However, as indicated in the drawing, there would be no amplitudes existing

beyond the mounting surfaces. Therefore, the density function would be zero

below these limits allowing one to write zero limits in equation (116).

If the density function is given digitally as a t_vo-dimensional frequency

histogram such as described in Section XIV, equation (116) could be easily

evaluated. One merely needs to count the number of observations lying to the

right of the line x + y = a. Results of analog displays would have to be arrang-

ed and interpreted in a similar manner.

3. CONDITIONAL PROBABILITY DENSITY FUNCTIONS

A conditional probability density function relates the occurrence of two

events to the probability of occurrence of one of these events. In particular,

for the pair of records R = x(t) and S = y(t) one may write equation (iii) as

Prob[x <R -< x+ AX, y <S -< y+ Ay]

= Prob[x <R - x + AX] ' [Proby <S- y

+ A y [x<R _ x +Ax]

(117)

213



In equation (it7), Prob[x < R <- x + Ax] is the first=order probabilityof

equation (97) while Prob[y< S -< y + Ay [X <IR--< X +AX] is the conditional

probability that S lies in the interval (y, y + Ay) given that R lies in the

interval (x, x +AX).

Analogous to equations (97) and (112), a conditional probability density

function p (y Ix) may be estimated by

Prob[y<S_< y+Ay I x<R- < x+Ax] _ p(y Ix) Ay. (tls)

Assuming p(x) to be different from zero, the analogy to the previous cases
is extended and

p(y x) = lira

A y.--.-O

Prob [y<S-<_' +Ay[ x <R-x + AX] = p(x,y)
Ay p(x) "

(119)

Again, as in the previous cases, measurement of the conditional probability

density function is subject to statistical uncertainties.

Applications:

The complete evaluation of p (y { x) requires a tremendous amount of

effort. This requires measurement of Prob [y<S-y + Ay { x<R---x + AX]

for all intervals A x, A y that cover the entire range of interest. This effective-

ly amounts to the evaluation of a density function of y given any specific x and

vice versa if p(y ] x) is desired. The evaluation is actually quite similar

but somewhat more extensive than that of a joint density function.

The conditionalprobabilitydensity function might be applied to aid the

interpretationof the autocorrelation behavior of a random process. For exam-

ple, consider a random process x(t), and lety(t) be x(t) delayed by some

value _-;that is, y(t) = x(t+T). One can nowobtain values of p(ylx o) as a

function of c for some fixed xo, For a specificvalue x0and a value of T for

which the autocorrelation function is relativelylarge, the variabilityof

p(y {x0) would be comparatively small. This in effectallows the interpretation

of the conditionalprobabilityin _ predictive sense.
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In a special case, the conditional probability canbe computeddirectly.
For example, assume the random process x(t) hasa normal density function
with mean _ = 0 and variance _2. Assuming the process is stationary, then

ify(t) =x(t + _-) is the second process, y (t) will have mean value _ =0
and variance a 2 also. The first-order normal density function p (x) is given

by equation (103) and the joint normal density function p (x, y) is

p(x, y)
27ra a [1- F 2 2 1 F 2- x

x y xy xy

(120)

where

o.2 = E[x 2] ; a2 = E[y2] (121)
x y

F E[xy] (122)=
ffff

xy

then

Letting F = Fxy, the conditionalprobabilitydensity for y given x is

p(ylx) p(x,y) i= = exp
p(x) F2

Y

(123)

For the special case at hand (r = o. = _ and equation (121) reduces to
x y

1
p(y Ix) = exp -1 (y - F x) 2|

2o .2 (1-F 2) ]
(124)
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The correlation coefficient r is the normalized value of the autocorrelation

function evaluated at 7. Therefore, for a fixed x one can consider equation

(120) as giving probability density functions for y as a function of 7.

Numerical Example

Assume that atT=.5sec, F =.80. Assume alsox=2o, and itis

desired to findthe probabilitythaty lies between Yl = i.95 _ and Yz = 2.05 a.

For convenience, assume the variables have been standardized so that they
have unitvariance. One now wants to compute

Prob (1.95 < y _ 2.05 ix)

2.05

_-/
1.95

p(y [ x) dy

with P(yl x) given by equation (124). This may be approximated numerically.
First, for y = 1.95,

Pl = p(1.95[ 2.00) = i exp

(.36)

(1.95-2.00[.80])

= .66490 exp [-.17014]

= (.66490) (.84355) =.56088

Also, for y = 2.05

P2 =p(2.05] 2.00) = .66490exp -['-_-_ (2.05-2.00 [.80]) 2]

= .66490 exp [-.28125]

= (.66490) (.75484) = .50189 .

216



Now, the integral of equation (119) may be approximated by the following

formula with Ay = 0.10 as shown in the drawing below. Note that area is

essentially that of a trapezoid.

2p(yl x) dy _ (Pl +p2)
2

Y_

P!

_-- yYl Y2

Substituting the values for Pi and P2 computed above, one obtains

Prob (1 95 <y<2.05 I 2.00)_ (Pl +p2) Ay
• 2

= (.56088+.50189) .05 = .053

Therefore, given x = 2.00, the probability of y lying in the interval 1.95 to

2.05 is approximately. 053 or 5.3 percent.

E. Interpretation and Application of Correlation Functions

Correlation functions for random processes are divided into two types.

First, the autocorrelation function which is obtained by correlating a record

with itself, where one protion of the record is displaced in time relative to

the second portion. The more general case, the cross-correlation function,

is obtained by correlating two distinct random records, the second record

of which is displaced in time relative to the first record. The cross-correla-

tion function includes the autocorrelation function as a special case. In general,

these functions depend both on the instant of time at which they are measured

in addition to the time displacement. However, for stationary random
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processes (that is, processes which are invariant under a translation of the

time axis), the correlation functions depend only on the time displacement.

The subsequent discussion and results hold only for stationary or for stationary

ergodic random processes. The word "ergodic" indicating that time averages

on one long record can replace ensemble (statistical) averages.

i. AUTOCORRE LATION FUNCTIONS

Let {x k (t) } represent a random process and let angular brackets < >

denote ensemble averages taken over the index k; that is, averages of the

functions making up the random process computed at a given time t. Also

assume that the mean value of the process (and of each individual record) is

zero. The autocorrelation function, Rxx( _), of the stationary random process
is then defined by

Rxx(7) = <x k(t) xk(t+7) > (125)

If the process is ergodic, the ensemble averages are replaced by time

averages on a single member of the process, x(t), and the autocorrelation

function may be defined by the more practical formula below.

1 T/2
R (T) = x(t)x(t+7) = lira -- _" x(t) x(t + 7) dt 1126)

xx T_.. _ T -JT/2

In equation (126) the bar over x(t)x(t + 7) indicates time averaging. In

practice, of course, only estimates of equation (126) can be obtained since

T must be finite. This error and other inaccuracies give rise to basic statis-

tical uncertainties in the measurement of Rxx(_) which must be taken into

account in interpreting experimentally obtained values of Rxx(7). These

statistical uncertainties are discussed in detail in Section VIII. D. 2.

The definition given by equation (126) applies to random data. For

periodic data, the infinite average is not necessary and the correlation

function is defined by
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T/2

R (_.) = _l fT x(t) x(t+ _') dt (127)xx T _ /2

where the T is the period of x(t). For example, assume x(t) is a sine wave;

that is,

x(t) = A sin (2_rfot + 0) (12S)

where T = 1/f o. The autocorrelation function for this case is given below.

i T/2

fT A 2 sin (2 _f0t + 0 ) sinaxx(r) = - /2

A2 T/2
= -- f sin (2_fot + 0) [sin

T -_.T/2

[27rf o (t + T)+ 0] dt

(2_rf0t + 0) cos (27rf0T)

T/2
A 2 cos (2 _rf07) /"

T J
-T/2

+sin (2_f07") cos (27trot0)] dt

sin 2 (2wf o t + O)

+
A 2 sin (2_rf01") T/2

T /
-T/2

sin (2vfot + 0) cos (2_rfot + 0) dt

Now the integral of sin 2 (2_ fo t + O) taken over its period is T/2 while the

integral of the product of the sine and cosine is zero due to their orthogonality.
The final result is therefore

A2 (t29)
R (T)=-_- cos (2_f07) •XX
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For cases of narrow band noise in many physical problems, the auto-

correlation function is often given by a damped exponential of the form

-k IrJ
R (_) = Ae cos 27r for (130)

XX

where A and k arepositive constants. In the case of wide band noise, Rxx(_-)

has a sharp maximum at _ = 0 and fails off rapidly to zero on either side.

Figure 62 gives an illustration of these three cases. Several properties of

the autoeorrelation function in general are useful in their interpretation

and are noted here. Namely,

R (-_) =R (T) (t31_
XX XX

m

[R (7)] _-<R (0)=x 2 (t) forall7 (132)
XX XX

If x (t) is random, then

limR (r) = 0 (133)
XX

T--_ oo

The correlation coefficient F (7), which lies between -1 and +1 )s
defined by xx

R (z)
XX

I'xx(r) - R (0) " (134)
XX

The coefficient I'xx(7) gives a measure of the linear relation of x(t) to

x(t+ _-). Therefore, the correlation function may be interpreted as giving a

quantitative measure of the degree of linear dependence between a function and

220



itself measured _ time units later. One interpretation of F 2 (T) is as follows.
xx

F 2 (_') is that fraction of the variance of x(t + T) which is attributable to thexx

linear relation of x(t+_) to x(t). The quantity [1 - F2 (_) ] is the fraction
xx

of the variance of x (t +7) that is unexplained by x(t) and is attributable to
some other source.

SINE

WAVE

x(t)

 AAAAAAAAA,

 VVVVVVVVV

Rxx(rl

1AAAA/ AAAAA
VVVVVIVVVVV'

NARROW

BAND

NOISE

WIDE

BAND

NOISE

e

The cross-correlation function R
xy

defined by

Figure 62. Illustration of typical autocorrelation functions.

CROSS-CORRE LATION FUNCTIONS

Let (x k (t) } and {Yk (t)} denote two stationary random processes.

(_-) between {x k (t)} and {Yk(t)} is then
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/ N.
R = \_x'(t) Yk(t + /T)> . (135)xy

Fcr ergodic processes the ensemble average of equation (135) may be replaced

by a time average of single members of the processes and Rxy(T) is alternative-
ly defined by

R (T) r/2
xy = x(t)y(t+'r) = lira f x(t)y(t + r) dt . (136)

T -_ -T/2

As for the case of the autocorrelation function, statistical uncertainties will

exist in any estimate of equation (136) due to finite averaging time and other

inaccuracies. The same considerations discussed in Section VKI.D. 2 for the

autocorrelation function apply to the case of the cross-correlation function.

The relations given by equations (131), (132), and (133) for the au£o-

correlation function do not hold m general for the cross-correlation function.

However, similar relations do exist and are given below.

Rxy(r) = Ryx(- _') (137)

IRxy(r) I _ [Rxx(0) Ryy(0)]

!

for all T ; (138)

that is, Rxy(T) is not an even function as is Rxx(_-) , although when x(t) and

y(t) are interchanged, symmetry about the vertical axis exists. Equation (138)

is the analogous statement to equation (132), and, in fact, equation (132) is a

special case of equation (138). An additional relation for the cross-correlation

function is as follows:

IR (_'11 < 1
xy -- _" [iRxxC0) + R (0)] (139)YY
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Note that this relation also will give equation (132) as a special case.

A cross-correlation coefficient may be defined which gives the simple

correlation coefficient of equation (134) as a special case; that is,

F (r) = _ (140)

xy [Rxx (0) R (0)] _YY

The quantity r (T) is bounded by +1 and -1 as can be seen by applying
equation 9.74. xy

3. APPLICATIONS

Auto- and cross-correlation functions have been applied in the past to

many different physical problems. Such areas have been involved as improving

tracking radar reception, aircraft position finding, electroencephalogram

analysis, and many facets of vibration data analysis. Two underlying features
are fundamental to most applications. These are the determination of time

delays and the determination of an underlying functional relationship resulting

in large correlations.

(a) Example. Detection of Sine Wave in Noise (Autocorrelation)

As an example of detecting a functional relationship obscured by noise

which is important to vibration analysis, the detection of a sine wave in noise
will be illustrated. Assume the presence of a sinusoid x(t) = A sin 2 _0t with

A = 0.0254 cm (. 010 inch) and f0 = 100 Hz. Also assume narrow band noise,

n(t), is present at fo = 100 cps with a mean square value A2/2 = 32. 258 cm 2

(5 x 10 -6 in.2). The autocorrelation function of the sinusoid is given by

equation 9.65 which is R (T) = 32. 258 × 10 -5 [COS 2 u (100)r] cm 2 for the
xx

example at hand. The autocorrelation function for narrow band noise for this

example is assumed to be given by equation (130) which is R (T) = 5 × 10 -5nn

e -_v cos [2_r(100)_]. The constant c equals 32.258 × 10-5cm2 (5 × 10 -5 in.2)

since c must be the mean square value determined by letting _ = 0. The

constant k of equation (129) is arbitrarily assumed to be 30 rad/sec for this

example which is a typical value.

Assume that x(t) and n(t) are indeptendent. Then if y(t) = x(t) + n(t),

the autocorrelation function for y(t) is given by
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R (T) =R (T) +Rnn(T) (141)YY

Since R (T) is a cosine function and R (r) is a cosine exponential which
xx Im

goes to zero as T gets large, the R (T) term will domimte in equation (141)xx

for large T; that is, the following equation holds.

iim R (T) - _ " (142)
T -_ yy

One says that R (_-) and R (_) are asymptotically equal. This means, that
xx yy

when the autocorrelation function is plotted, it will start to look like R (v)
XX

for large T instead of decreasing to zero as pure noise would. This is illustra-

ted in Figure 63 for the special case described. One should note that an actual

autocorrelation plot would contain many irregularities due to statistical uncer-

tainties and other inaccuracies. However, the basic underlying shape would

appear as pictured in Figure 63.

(b) Example. Detection of Prominent Vibration Transmission Path

( Cross -correlation)

Assume that it is desired to attempt to determine whether the most

prominent vibration response on a structure is a result of transmission via

wave propagation through the structure or is due to acoustic transmission via

the surrounding air. For simplicity in the example, it will be assumed

that structural path lengths are great enough compared to the wave length

of the vibration so that any structural transmission is by wave propagation
(Fig. 64).

If the distance of transmission through the air is assumed to be 3.048

m 10 feet (and phase shifts at interfaces are ignored), a peak in the cross-

correlation function R (r) would be expected at
xy

3. 048m( 10 ft)
_" = 304.8 m/sec(1000ft/sec) = 0.01 sec

where the speed of sound is taken to be approximately304.8m/sec (1000 feet
per second).
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Figure 63. Autocorrelation function for sine wave plus noise.
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INPUT MEASURING DEVICE

INPUT VIBRATION xlt)

3.048m

<--THIN ALUMINUM SKINS--.*-
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3.048 m

STRUCTURAL MEMBER

_PPO _ _SSIBLE TRANSMISSION PATH
THROUGH STRUCTURE

OUTPUT MEASURING DEVICE

I OUTPUT VIBRATION ylt)

I
3.048 m

Figure 64. Transmission path determination example.

Wave propagation through the aluminum structure is assumed to occur

at a speed of approximately 4572 m/sec (15 000 feet per second). Therefore,
if significant vibration transmission occurs throught the structure, a peak

in the cross-correlation function R (7) would be expected at
xy

9.144m (30 ft)
_" = 4572 m/sec (15 000 ft/sec) = 0.002 sec

since the structural path is 9. 144 m (30 feet) long.

Suppose now that measurements of the input x(t) and the output y(t) are

obtained. An estimate of the cross-correlation function, R (7), is then
xy

obtained via an approximation to equation (136). The cross-correlation func-

tion might then appear as pictured in Figure 65. The interpretation would

be that a strong correlation exists between x(t) and y(t) at a delay of _" =. 010

second, indicating the major energy is being transmitted acoustically. A

secondary peak appears at z =. 002 second, indicating a weaker relation

because of the direct tranmission through the structure.
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Figure 65. Possible normalized cross-correlation function

for transmission path example.

The example given here greatly oversimplifies the problem, of course.

A considerable amount of structural engineering analysis would be required

to actually determine the structural response and its effect on transmission

delays. Also, statistical analysis is required in the proper determination

of the correlation function and its associated uncertainties. However, the

basic approach to the problem would remain the same.

(c) Example. Detection Theory

A more theoretical application of correlation techniques _rises in

detection theory. If it is assumed that a given input signal is obscured by

white noise, itcan be shown that the optimum linear filter takes the form of

a correlator except for a constant factor. In this situation the input which

consists of signal plus white noise is multiplied by a stored version of the

signal it is desired to detect. This gives the optimum putput where maximum

output signal-to-noise power ratio is the optimization criteria.

F. Interpretation and Application of Power Spectral Density Functions

The ordinary and cross-power spectral density functions are important

concepts for both practical vibration data analysis problems and for theoretical

structural analysis problems. In a theoretical context, the areas of application

for power spectra are effectively the same as for correlation functicns, since

the two properties for stationary vibration data are Fourier transform pairs.
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However, in a practical context, the frequency format of power spectra is

easier to interpret for many applications, just as the time format of corre-

lation functions is easier to interpret for certain applications discussed

in Paragraph E. of this section.

Ordinary and cross-power spectra are discussed here primarily in

terms of their relationships to idealized structures. Hence, it is appropriate

to first review the dynamic characteristics of idealized structures before

proceeding.

t. RESPONSE CHARACTERISTICS FOR IDEALIZED STRUCTURES

An idealized structure is defined as one which has constant parameters,

and is linear between two points of interest called the excitation (input) point

and the response (output) point. A structure has constant parameters if all

fundamental properties such as mass, stiffness, damping, and geometry are

invariant with time, and the surrounding environment. A structure is linear

if the response characteristics are additive and homogeneous. The term

additive means that the response to a sum of excitations is equal to the sum

of the responses to the individual excitations. The term homogeneous means

that the response to a constant times the excitation is equal to the constant
times the response to the excitation.

Given an idealized structure, the weighting function h(_) associated

with the structure is defined as the response (output function) of the ideal-
ized structure to a unit impulse input function and is measured as a function

of time, 7, from the moment of occurrence of the impulse input. For physi-
cally realizable systems, it is necessary that hiv) = 0 for _ < 0 since the

response must follow the input. The usefulness of the concept of the weight-

ing function is because of the following: an idealized structure is completely

characterized by its weighting function in the sense that given any arbitrary

input as a function of time x(t) and known for all t, the system output yit)
is determined by the equation

y it) f h (7) x(t - 7) dr ; (143)
0

that is, the value of the output function, yit), at time t is given as a weighted

linear (infinite) sum over the entire past history of the input xit).
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If x(t) is an input to the structure for only a finite fixed time T, then

T
y(t) = f h(r) x(t-r) dr . _144)

0

If x(t) exists only for t >- 0, then

t

y(t) f h (r) x(t-r) dr
0

since

(145)

oO

f h (r) x(t- r) dr
t

= 0 ;

that is, for t-r < O, or 1" >t, x(t- 1") = O. Hence the above equation.

The idealized structure may alternatively be characterized by its

frequency response function H(f) which is defined as the Fourier transform

of h (r),

oO

H(f) = fh (r) e -j27rf-r dT (146)
0

where f is measured in cycles per unit time. The lower limit is zero instead

of -_ since h(r) = 0 for _- < 0. The replacement of the weighting function \vith

the frequency response function may be made since there is a one-to-one cot'-

respondence between classes of suitably restricted functions and their Fourier
transforms; that is, two different weighting functions will not give the same

frequency response function. The restrictions on h(r) are that h(r) and

its derivative h'(_') must be piecewise continuous on every finite interval

(a, b), and that i h (T) I must be integrable on (-_. _o). It should be noted

that the frequency response function is a special case of the transfer ffmction

-j 2 _fr
of a structure given by the Laplace transform of h(r) in which case e

in equation (.146) is replaced by e -pI" where p is a general complex variable.
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The frequency response function is of great interest since it contains

amplitude magnification and phase shift information, Since H(f) is complex

valued, the complex exponential (polar) notation may be used; that is,

H(f) = TH(f) ! e j_)(f) i147)

where '_H if) ! is the absolute value of H if) and ¢ (f) the argument of Hif).

The absolute value [H (f) t, which is often called the gain factor, measured

the amplitude magnification when the input to the structure is a sinusoid while

the angle ¢ if), which is often called the phase factor, gives the corresponding
phase shift.

This result may be easily seen by consideration of the complex input

xit) = ae j2_rft = Ae j0) e j2_t

= A cos (21rft+ 8) +j A sin (27rft+ O) . (148)

Note that the real part of equation (148), A cos (2 7r ft + 0) is a general

sinusoidal input with amplitude A and a phase angle 0 with respect to some

time origin. By definition, an idealized structure is linear which implies

the real part of the output response is due to only the real part of the input

excitation, and likewise for the imaginary parts. Hence, any result obtained

for the complex function contains the same result for the real part of the

function as a special case. These facts allow the concrete physical inter-

pretation to be placed on the frequency response function of equation (147),

even though it i_ a complex valued quantity.

Substituting equation (148) into equation (143) gives

cO

y(t) = fhir) ae j21rf(t-r) dr
0

eJ2 7r ft e-J2 7rfr= a f h (r) dr
0

= x(t) H(f)
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or, once can write

y(t) = A IH if) ]e j [27r ft+ O +¢P (f)] (149)

which illustrates the amplification by the gain factor r H (f) r and phase shift by

the phase factor _ tf) of the sinusoidal input.

Certain other symmetry properties are worthwhile to note, namely,

oo

i 7r

H if) = f h(l") e J2 dl- = H i-f)
ft

0

(15o)

where H (f) is the complex conjugate of H(f). Also, this relation gives

H if) = { H (f) ! e -j _ (f)

H t-f) = ! H(_f) l e jet-f)

which implies

{Htf) { = ]Ht-f) _ (.151)

and

-¢ (f) = ¢ (-f) . (152)

Another important relationship is that given the input x(t), the weight-

ing function hit), and output ytt), then

Y(f) = H(f) X(f) (153)
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where Y(f) and XCf) are the Fourier transforms of y(t) and x(t),

tively. This may be shown directly as follows.

Y(f) = h(_) x(t - r) dT e -j2 _ ft dt

ms.c-

-j2_r ff
Now, multiplying and dividing by e and rearranging terms gives

(TY(f) = . h(r) e x (t-r) e dt
0 -ao

The desired result is obtained by the change of variable u = t - r and du = dr

in the righthand integral.

The following important fact is seen immediately. If one idealized

structure described by Hi(f) is followed in succession by another idealized

structure described by H2(f) where the second structure does not load the

first, then the overall structure is described by H (f) where

H(f) = Hl(f) H2(f) .

This is true since

Y(f) = Hi(f) X(f)

and

Z(f) = H2(f)Y(f) =H2(f) [Hi (f)X(f)]

= [H 2 (f)Hi(f)]

= H(f) X(f) .
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This implies that

IH (f) I = IH I (f) I IH2(f) I

¢ Cf) = _)l(f) + ¢2Cf) (154)

so that in cascaded idealizedstructures, the gain factors multiply and the

phase factors add when itis assumed thatthe two structures are decoupled.

Note thatuse is often made of the complex exponential notation since it

conveniently displays amplitude magnification and phase shiftinformation.

This is merely polar coordinate notation in the complex plane, however, under

certain conditions the x = u + iv form of notation may conveniently illustrate

certain information in a useful manner. In thiscase, Re (x) = u and Irn (x) =

v are defined as the real and imaginary parts of the complex variable x. This

alternativeinterpretationis illustratedin the material which follows.

2. IDEALIZED STRUCTURE WITH MOTION EXCITATION

Consider the case of a structure which is subjected to a foundation

motion excitation. Assume that the structure can be represented by a simple

linear lumped parameter system consisting of a mass, spring, and dashpot

as shown in Figure 66.

I!111111111111111111111111

xlt)

I 1 EQUILIBRIUM
m y(t)

Figure 66. Idealized structure with motion excitation.

In Figure 66, k is the spring constant in N/m, c is the viscous damping

coefficient in Ns/m, and m is the mass in kg-sec2/inch. The term x(t)
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is the excitation measured in any units of motion desired (displacement,

velocity, acceleration, strain, etc.), and y(t) is the response measured in

the same units. The model in Figure 66 might represent some secondary

structure in a flight vehicle (simplified to only one degree-of-freedom) which

is subjected to random vibration of a primary supporting structure. The

problem is to determine an appropriate frequency response function for this
model.

From basic dynamics, the stun of all forces acting on the mass in

Figure 66 must equal zero; that is,

Fk(t) +Fc(t) + Fm(t) = 0
(155)

whe re

Fk (t) = -k [y (t) - x(t)] = spring force

F (t) =-c [Y (t) - x(t)] = damping force
C

o,

F (t) = -my (t) = inertialforce
m

y(t) = dy(t) /dt = velocity

y (t)= d2y(t)/dt 2 = acceleration

Now assume the foundation motion is sinusoidal such that x(t) = X 1

sin 2 r ft. It will be more convenient here to use complex numbers instead

of trigonometric functions. From the identity, e j 8 = cos 8 + j sin 8, it

follows that a sinusoidal function may be expressed by sin 8 Im [e j 8].

Using this notation, the assumed foundation motion is

x (t) = Im[Xle j2_ft] (156)

From equations (155) and (156), the resulting equation of motion for the

structure is as follows:
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m_'(t) + c_ (t) + ky(t) = Im[(k+j27rfc)Xle j2_rft] . (1.57)

The particular solutionto equation (157) will yield the desired steady state
response y(t).

Now assume a solution to equation (157) in the general form of a
sinudoidal response as follows:

y (t) = Ylsin (27rft+9) = Im [Yle j (2_ft+9)] (158)

Here Y1 is the peak value of the response and _ is the phase angle between
the response and the sinusoidal excitation. When equation (158) is sub-

stituted into equation (157), the following relationship is obtained:

Im [- (2 _f)2m + j2_fc + k]Y 1 e j (2_ft + 9)

Im [(k +j2 _fe) Xle j2_ft]
g"

= :.- (159)

Hence, the particular solution to equation (157) is given from equations
9.94 and (159) as follows: _,

y(t) = Im ',k +_2_fc) X le j2_
k- (2_f) zm+j2_f

(160)

It is desirable to write equation (160) in a different form by introducing
4

two definitions

=- where c = 2 (161a)
e c

e

n 2-'_ " (161b)
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The term c in equation (161a) is called the "critical damping coefficient"
c

and the ratio _ is called the "damping ratio." The term f in equation (161b)

is called the "undamped natural frequency." When the relationships in equation

(161) are substituted into equation (160), the following result is obtained:

y (t) = Im

m

- +j2 T
n

(162)

When equation (162) is converted from complex notation to trigonometric

notation, the following result is obtained.

y (t)=

+ _ f X 1sin (27r ft÷

(163a)

where

= - arc tan
2

(163b)

Note next that the frequency response function for this problem may

be written as

H(f) = IH (f) e jO(f)
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where the gain factor I H (f) I is given by the ratio of the response amplitude

to the excitation amplitude, and the phase factor _ (f) is given by the phase

shift between the response and excitation. Hence, from equations (158) and

(163b), the gain factor [ H (f) I is given by

1 + _ f

]H(f)l = y f 2 2 f 2 (164)
- +

and _ (f) is as given by equation (163b). The general result is illustrated

i_ Figure 67.

I H(f)l ¢ (f)

1 m

0 i
fn

180

2 fn

D f 0 f
!

0 fn

Figure 67. Gain and phase factors for frequency

response functions.

The frequency response function H (f) for this problem may also be

written directly from equation (162) in the following form. This is often

called the "transmissibility function" for the single degree-of-freedom

system.
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f

1 + T
H(f) = n . (165)

- +j2_ _--
n

Equation (165) may be written as a complex number w = u + iv, where the

real and imaginary parts are as follows:

H(f) = Re [H(f)] + jim [H(f)] (166)

where

2 2

i - -f + 2_ "_n

Re[H (f) ] = 2 (166a)

3

Im[H(f)] = 2 _ 2 " (166b)

_f + T
n

The general result for this type of presentation is illustrated in Figure 68.

There are other frequency response functions which are applicable to

a simple idealized structure for different interpretations which should not be

confused with the transmissibility function of equation (165). For example,

assume the response parameter of interest in Figure 66 is the relative motion

z(t) = y(t) - x(t). The appropriate frequency response function which relates
a motion excitation x(t) to a relative motion response z(t) is as follows:
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n
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H (t)

mm

%
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/ \

fn _ _""" "" "-- "--
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= f

Figure 68. Real and imaginary parts for frequency

response function.

For a second different example, assume the response of a simple

structure to a force excitation is of interest, as illustrated in Figure 69.

///,/////////

k < c

<

m

IIIII1 I I I / I / POSITION OF

EQUILIBRIUM
y(t)

1
x(t) = F(t)/k

Figure 69. Simple idealized structure with force excitation.
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Here, the excitation x(t) is a force excitation which is normalized to displace-

ment units, and y(t) is the response displacement. The appropriate frequency

response function which relates a force excitation x(t) to a absolute response

displacement y(t) is then as follows:

H(f) = . (168)

1- f +j2_ -_-
n

3. ORDINARY POWER SPECTRAL DENSITY FUNCTIONS

Given a stationary random vibration record y(t) of length T seconds

the ordinary power spectral density function Gy(f) is defined in Section

VIII. B. 2. C. as follows:

T

1 f2G (f) = lim lim T(Af) y_f (f,t) dt
Y T--* _o A f--*0 0

_169)

The quantity 2 (f, t) is the square of the instantaneous amplitude within theYAf

narrow frequency interval between f Hz and f + Af Hz.

One must be careful in the interpretation of equation (169) in that,

although it is a physically appealing definition, there are frequency filtering

operations implied in the definition of the quantity y_f_f, t) which are not

explicitly indicated in the definition of G (f). The definition of the spectral
Y

density given by equation (169) is very satisfactory from the measurement

point of view in that it describes a direct physical approach to obtaining

G (f). Of course, T will always be finite and Af will be nonzero in actual
Y

practice. These matters are discussed in detail in Section VIII. D. 3.

A definition more appropriate in analytical studies is obtained by con-

sidering the Fourier transform of the autocorrelation function R (T)-R (v).
Y YY

See paragraph D. of this section for a definition of R (T). To be specific,
Y

define a function S (f)- S (f) where f r'anges over -_¢ < f < _o by the relation
YY Y
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S (f) = f e -j27rfr R (r) dr
Y Y

Equation (170) may be simplified by the following procedure:

(170)

f e -j2vff R (T)
Y

a_

f R (v) cos 2_rfr dt
Y

j f Ry(_') sin 27rfr dt
(171)

Use the fact now that R (T) is an even function and sin 2_v dT is an odd
Y

function. That is, R (_')= R (-T) and sin 27r (-1-) = -sin 27rfT. Then, the
Y Y

imaginary term in equation (171) is zero since it is the integral of an odd

function between symmetric limits. This is shown mathematically by

-._ -_ 0 -

0 y

(-r) sin 21rfC-T) d7

+

oo

f R (_)sin27rfTd7=Y0

,

Therefore,

S
Y

(f) = f R (T) cos 2_r fv dl"Y
(172)

241



The quantity S (f) is a two-sided mathematical idealization which
Y

covers the frequency interval from minus infinity to plus infinity. Note that
Sy (f) is actually ficitiious since negative frequencies are physically unreal-
izable. However, Sy (f) is related to the physically realizable one-sided
power spectral density function Gy (f) which exists only for f >_-0 as follows.
Define

G (f)= S (f) + S (-f) = 2S (f) for f _->0 (173)
Y Y Y Y

= 0 for f < 0

Then, the following relationship is true:

Gy(f) = 4 f0 Ry(T) cos2_ff dr
(174)

The equivalence of equations (169) and (174) is proved in Reference 24.

These equivalent relationships are fundamental to the proper interpretation

and application of power spectral density functions, as will now be shown.

Consider an idealized structure with a weighting function h(T). If an

excitation of x(t) is applied to the structure, the response y(t) is given by

CO

y(t) = f h(T) x (t-r) dT (175)
--CO

Then, the power spectrum for the response is as follows:

O0 CO *

-Z_rff R -27rfr ES (f) = f e (T) dT= fe [y(t) y (t+T)] dT
Y Y

--CO --CO
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cO cO o0

=fff -27rf_" h(e o_)h(fl)E[x(t -_ )x(t+_--fl)]d_d_d_-

co oO cO

f f f h( )e
27rfa

h_) e-21rfflR (_+ol -fl)

e- 2 _'f (-r+c_ +fl) d_ dfl d_- .

Noting that 1-, _, and fl are dummy variables, a change of variable

t = • + c_ - fl, dt = dr, can be made so that the equation may be factored to

obtain the following result:

S Cf)=H(f) H* (f) S (f) = [H(f) l 2S (f) o (176)
y x x

In equation (176), H(f) is the frequency response function for the

structure between the excitation and the response, H* (f) is the complex

conjugate of HCf), and [HCf)[ is the magnitude of H (f) or the gain factor

for the structure. The quantity SxCf ) is the two-sided mathematical power

spectral density function for the excitation. In terms of the physically

realizable power spectra for the excitation and response, equation (176)
becomes

G (f) = IHCf)12GxCf ) . (177)Y

The result presented in equation (177) is extremely important and

illustrates the fundamental value of power spectra concepts for structural

vibration problems. In words, the power spectrum for the vibration response

of an idealized structure is equal to the power spectrum for the excitation

multiplied by the square of the gain factor for the structure. Given any two

of the quantities in equation (177), the third can be determined. For example,
if the frequency response function for a structure is known, the power spectrum
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for the responsecanbe computedgiven the power spectrum for the excitation,
andvice versa. Also, if the power spectra for the excitation andresponse
are known, the gain factor for the structure (but not the phasefactor) can
becomputed.

Referring to equation (172), the inverse Fourier transform for the

power spectral density function is

cO cO

R_ = f Sy(f) cos 2_r f7 df = f Gy(f) cos 27r fT clf . (178)
-co 0

The mean square value of the signal is equal to the autocorrelation function

for zero time displacement (_'=0). Hence, the following relationship ensues
directly.

co

-- fGy
y2 = R (0)= if) df . (179)

Y

The total mean square value for a random vibration is equal to the total area

under the power spectrum for the vibration. The rms vibration amplitude is

equal to the square root of the area. Furthermore, if only those frequencies

in the range between fa and fb Hz are of interest,

7 (fa, fb ) = i 'f'b Gy(f)df

a

(180)

m

y_ (f, fb) is defined as the mean square value of a random vibration in the

frequency range from f to fb Hz and is equal to the area under the powera

spectrum for the vibration between those frequency limits. The corresponding

rms vibration amplitude is equal to the square root of the area.

Numerical Example:

Consider a structure between two points of interest on a flight vehicle.

Assume the fundamental natural frequency and damping ration for the structure
are
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f = 100 Hz
n

= 0.025

Further assume that one end of the structure is subjected to a vibration x(t)

which, when measured in acceleration units, has a reasonably uniform power

spectral density function of

G (f) = 0.01 g2/Hz
X

over a frequency rangefrom f << 100 to f >> 100 Hz. Note that g = 9. 804
m/sec 2 (386 tnches/sec2). The problem is to determine the power spectrum

and rms amplitude for the response acceleration at the other end of the
structure.

Assuming that the structure may be represented by a simple ides2ized

structure as shown in Figure 66, the appropriate gain factor for the structure

is given by equation (164), in that section. For a natural frequency of f =n

100 Hz and damping ratio of _ = 0. 025, the gain factor is

[H(f) [
1+t°°5 t,oo

f 2 2
- +

0.05 f

100

From equation (177), the power spectral density function for the response

acceleration will be as follows:

G (f) =
Y

100 O. 01

2] ' + rO. O0_] '

,oo j L,00j

g2/H z
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A plot for the response power spectrum is presented in Figure 70.

The total mean square value for the response acceleration will be
given in general terms as follows.

oo oo 2

= n elf (is1)

For the special case where O (f) is a constant (hypothetic.Uy for all fre-
quencies), equation (181) canXbe integrated by the method of residues to

obtain the following solution:

_f (i +4_ 2) G _f G

"_ = n X n x
4 _ _ 4 _ for _ << 1 . (182)

Substituting the proper values for this problem into equation (182) gives the
following result:

,r (100) (0.01) = 31.4g z
= 4(0.025)

Hence the rms response acceleration is

Yrms = 5.6 g = 55.88 m/sec2(2200 in./sec2).
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Note that the value for y'} could also be obtainedby graphically measuring
the area under the responsepower spectrum in Figure 70.

4. CROSS-POWERSPECTRALDENSITYFUNCTIONS

Given two stationary randomvibration records, x(t) andy(t), each
of length T seconds, the cross-power spectral density function G (f) is

xy
defined in SectionVIII.B.2.f. as follows:

Gxy(f) = Cxyif) - JQxy if) (/83)

where

T

1 yA f(f, t)
Cxy(f) = lira lim T(AI) J0 x Af(f,t) dt (183a)T-*co A f---0

1 T /VVVVV

QxY(f) = T--colim Af---01im TiAf) J0 xA f(f't) YAfif't) dt (183b)

The quantities xA f(f, t) and y A fif, t) are the instantaneous amplitudes within

the narrow frequency interval between f Hz and f + A Hz. The symbol (WW)

in equation (183b) means that xit) is 90 degrees out of phase with y(t).

From equation (183), the cross-power spectrum is a complex valued

quantity with a real part C (f) called the cospectrum and an imaginary part
xy

Q (f) called the quadspectrum. The definition of G if) in equation (183)
xy xy

is satisfactory from the measurement point of view in that it describes a

direct physical approach to obtaining Gxyif), just as equation (169) describes

a direct physical approach to obtaining the ordinary power spectrum G if) •
Y

Of course, T will always be finite and Af will be nonzero in acttm2 practice.

These matters are discussed in detail in Section VIII. D. f.
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The cross-power spectrum is a generalization of the ordinary power

spectrum as the cross-correlation function is a generalization of the auto-

correlation function. Hence, the most direct definition is an analogy to

equation (170) ; that is, define

Sxy(f) = J e-J2_frR (I-) dr (184)
xy

where R (r) is the cross-correlation function defined in Paragraph D. of this
xy

section. Because R (_') is not an even function, the imaginary portion of
xy

this transform does not vanish in general, and therefore S (f) is a complex
xy

number. As before S (f) is a two-sided mathematical idealization which
xy

covers the frequency interval from minus infinity to plus infinity. A physically

realizable cross-power spectral density function Gxy(f) is given by

Gxy(f) = Cxy (f) - JQxy(f) = 2Sxy(f) ; f _ 0 (185)

= 0 forf< 0

Referring to equation (184), it can be shown from the sin 2v ft and

cos 2_r ft parts of the Fourier transform that the cospectrum is an even function

of f while the quadspectrum is an odd function of f; that is,

Cxy (f) = Cxy(-f)
(ls6)

Qxy (f) = "Qxy (-f) "

Also, from the symmetry property of the cross-correlation function, R
xy

(- _) = R (_-), it follows immediately that
yx
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oO

Cxy(f) = f0[ Rxy (_) + Ryx (
T)]cos 21r f_-dT

1

= _- [Gxy (f) + Gxy(-f)]

QxY(f) = f0 [Rxy(T) - Ryx
(T)] sin 27r fT dT

(187)

=1 [G (f)-G C-f))
2 xy xy

In the above equations, it is sufficient to obtain the functions for f _> 0 since

the symmetry properties in equations (186) yield the results for f < 0.

A further relation for the cross-power spectrum may be obtained from

the symmetry properties of the cross-correlation function. (See Paragraph
E. 2. of this section. )

G (-f) = G $ (f) = G (f) (188)
xy xy yx

Here, Gxy (f) is the complex conjugate of Gxy(f). From basic considerations,

it can be shown that GxyCf) satisfies the following important inequality:

2

IGxy (f) I -<Gx (f) Gy(f) (t89)

Now consider an idealized structure with a weighting function h(v).

Assume that an excitation x(t) with a power spectral density function G (f) is
x

applied to the structure producing a response y(t). By the same procedures

used in Paragraph F. 2. of this section, it can be shown that

GxyCf) = HCf)Gx (f) (190)
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where H (f) is the frequency response finction for the structure between the

excitation and the response.

The physical interpretations for cross-power spectral density functions

are similar in part to the applications for cross-correlation functions. Speci-

fically, a cross-power spectrum will reveal dependence (or coherence) between
two vibration records. That is, if two random vibration responses, x(t) and

y(t), are completely independent and unrelated to one another, the cross-

power spectrum for the two responses will be zero at all frequencies. On the

other hand, if the two vibrations are related, the dependence must be due to
some structural connection between the points where the vibrations occur.

For this case, a nonzero cross-power spectrum will be measured which is

associated with the frequency response function for the structure between

the points.

Consider the case where a vibration response y(t) at some point on a

structure is the result solely of the vibration response x (t) at some other point.

Clearly, x(t) may be considered an excitation which produces a response y(t).

The frequency response function between the two points will be given directly

by equation (190). This points out the most important application for cross-

power spectral density functions; that is, the determination of frequency

response functions for structures from measured vibration data.

Because the interpretations for cross-power spectral density functions

are closely associated with structural frequency response functions, it is often

desirable to present a cross-power spectrum in the form of a magnitude and

phase angle as follows:

Gxy(f) Cxy(f) JQxy (f) [Gxy (f) I e joxy(f)= - = (1917

2
I Gxy(f) I = _/ CZxy(f) + Qxy (f) (192)

-Qxy(f)

0xy (f) = arc tan Cxy (f)

(193)

By presenting the frequency response function H (f) in terms of the

gain factor IH (f) I and the phase factor _ (f), equation (190) becomes
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]G (f) I eJexY(f)= IH(f) J e J_'_(f'G_ (f)
xy x

(194)

Hence, the following input-output relationship exists:

PGxy(f) I = lH(f) I Gx (f) (195)

e (f)= (f)
xy

The cross-power spectrum for an excitation and response has a magnitude

equal to the power spectrum for the excitation multiplied by the gain factor for

the structure, and a phase factor equal to the phase factor for the structure.

Ncte that the phase angle e (f) can be used to determine time delays, as
xy

would be obtained from a cross-correlation function. The time delay Txy(f)

between the excitation and response at any frequency f is given by

e (f)

•xy(f) = 21rf " (196)

Numerical Example:

Consider a structure between two points of interest on a flight vehicle,

as discussed for the example in Paragraph F. 2. of this section; that is, assume

that the structure may be represented by a simple idealized structure as

shown in Figure 66, with a natural frequency of f = 100 Hz and a dampingn

ratio of _ = 0. 025. Further, assume that the structure is subjected to a

vibration excitation which, when measured in acceleration units, has a reason-

ably uniform power spectral function of Gx(f) = 0.01 g2/Hz over a frequency
range from f << 100 to f >> 100 Hz. The problem is to determine the cross-

power spectrum for the response acceleration relative to the excitation,

and the time delay between the response and excitation at the frequency
f = 100 Hz.
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by

From equations (t91) and (195), the cross-power spectrum is given

J 0xy(f)

Gxy(f) = IGxy (f) I e

whe re

G (f) = 0.01 IH(f) I g2/Hz
xy

0 (f) = _ (f) radians
xy

The appropriate gain factor and phase factor for the structure is given by

equation (163) Substituting from equation (163) and noting that f =100 Hz• n

and _ = 0. 025, the cross-power spectral density function is as follows:

IG if) I 2
o. o5f ]

+ L looj

Oxy(f ) = - arc tan

o.os
2

+

For the frequency f = 100 Hz, the phase angle for the cross-power

spectrum is
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0xy(100) = - arc tan (20) = 1.52 radian.

Hence, from equation (196), the time delay between the excitation and res-
ponse at f = 100 Hz is as follows:

l. 52
= -- = 0.0024 second

xy 200_

1 COHERENCE FUNCTIONS

The application of cross-power spectra concepts as a tool for measur-

hag the frequency response functions for structures is best implemented with
aid of a real-valued quantity called the coherence function. The coherence
function __ (f) is defined as follows:

xy

tG (f) 12
2 (f) = xy . (197)

Txy Gx (f) Gy (f)

For an idealized structure (constant parameter linear system) where
a response y(t) is due solely to an excitation x(t), the coherence function

for x(t) and y(t) will be unity for all frequencies. This can be shown from

equations 9.113 and 9.126 as follows:

2

IG (f) 12 G2x(f) IH (f) I

(f) = G (f)Gy(f) = = 1 (198)
x Gxlf) IH (f) Iz G If)

X

If a response y(t) is not because of an excitation x(t), [that is, y(t)

and x(t) are independent], the coherence function for x (t) and y(t) will be

zero for all frequencies. If a response y(t) is only partially because of an
excitation x(t), the coherence function will have some value between zero

and unity which indicates the amount of dependence or coherence between

the x(t) and y(t). Hence, the coherence function furnishes information sim-

ilar to that available from the correlation coefficient discussed in Paragraph
E. 1. of this section.
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The coherence function may be thought of as a ration of two particular

estimates for the square of the gain factor for a structure between t_vo points

of interest. To be specific, consider equation (177) as giving one estimate

A G (f)

Y (199)
[H(f) l 2 _ G if)

X

and equation (195) as giving a second estimate

2

IG (f)I

IH if)12 = xy (200)
G 2 (f)
X

where x and y are data from the two points involved. The hat (n) above the

symbols is used to indicate that these are estimates for [H (f) I based upon

the measured data. If one takes the ratio of these t_vo estimates, the coherence

function is obtained.

^ 2 IG if)f2 G (f)
lHif)I _ xy x 2

^ _ = 7xy (f) (201)
IH(f) } 2 G 2 if)G (f)1

x y

A

It should be noted that IH (f) [ in the above equations will equal the

correct gain factor [H (f) I for the structure in question only if underlying

assumptions are satisfied. Specifically, the structure must truly represent

a constant parameter linear system and the measurements must be free of

extraneous noise.

As noted earlier in equation (189), cross-power spectra satisfy

the inequality

[Gxy(f)}2_ Gx(f)Gy(f) (202)
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Hence, the coherence function is bounded by

0 =<Yxy (f) =< 1 (203}

Note that the coherence function can never be greater than unity. Equation

(198) shows that the coherence is unity if the underlying assumptions, in-

cluding linearity, are valid. The coherence function may be thought of as a

measure of linearity, are valid. The coherence function may be thought

of as a measure of linearity in the sense that the function attains this maxi-

mum value of unity for all frequencies if the structure is linear. Hence,

if the coherence function is less than unity, one possible cause might be

the lack of linear dependence between the excitation and response.

However, the reverse statement does not follow from what has been

presented here. That is, the above argument does not prove that the coherence

function will necessarily be less than unity for a nonlinear system, although

in fact this is considered to be true. As mentioned before, the presence of

unwanted extraneous noise in power spectra measurements will also influence

the resulting coherence function and cause its value to be less than unity.
These important matters will now be discussed.

a. Noisy Measurements of Frequency Response Functions.

The effect of additive noise on frequency response function estimates

is developed here. The coherence function plays a crucial role in these
considerations. Three cases are of concern:

1. Uncorrelated noise occurring in the input measuring device.

2. Uncorrelated noise occurring in the output measuring device.

o Uncorrelated noise occurring in both the input and output

measuring devices.

The third is clearly the most important and contains the other two as special

cases. However, they are presented in the indicated sequence for simplicy.

Case 1. Noise in the Input Measuring Device
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Let x(t) represent a measurement of the input to a system. Assume

that this measurement is made up of the true signal u(t) which passes through

the system, and a noise componentn(t) which is uncorrelated with either

the input or output.

lu(t) [
= system

n(t) > _ = X(t}

The measured input is given by the equation

x(t) = u(t) + n(t) (204)

It is easily shown that the power spectral density function and cross-

power spectral density function for the signal and uncorrelated noise are

additive. The following equations hold true.

Gx(f) = Gu(f) + Gn (f) (205)

since

G (f) = G (f) + G (f) = G (f) = H(f)G (206)
xy uy ny uy , u

G (f) = 0
ny

For this case the coherence function between x(t) and y(t) is

!G (f) 12 G 2 (f)IH (f) [2
X_ _ U

2 (f) =
Vxy

G (f)Gy(f) G (f) IH(f) }2 Gu(f )
X X ' •
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C (f)
u 1

- Ox (f) = 1 + [Gnt J/ tl'f<'Gu'f)" < 1 (207)

This relationship clearly shows that any noise present in the input measuring

device reduces the coherence function to less than unity. Also, as the input

signal to measuring device noise ratio becomes small, the coherence function

becomes small. If the noise power spectral density frunction is much less than

the signal power spectral density frunction, that is G (f) << G if), then
n u

equation (207) may be put in a simpler form,

_xy(f) _ 1 - [Gn(f)/Guif)] (208)

The gain factor estimates

(199) and (196), respectively, are related to the true gain factor by the

following equations:

G if) G if) G if)

IH(f) l2 __ j _ 3, x _ IH(f) I 2 1
Gu(f) Gx if) Gu (f) "/2xy(f)

^ A

[H (f) I1 and tH if) ]2 given by equations

(209)

JH(f) l = ]Gu_if) l = rGxy(f) I _ IGx_if)[ Gx(f)

Gu (f) Gu(f) Gx(f) Gu(f)

^ 1
IH if) 12 (210)

2 (f)
_/xy

One should be careful to note that the square of the gain factor is involved in

equation (209) as compared to the unsquared gain factor occurring in equation

(210).

Case 2 . Noise in the Output Measuring Device
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In this case x(t) is input to the system, v(t) is the output, and y(t)

is the measured output which contains a noise component n(t) due to the output

measuring device.

x(t) =[ Iv(t)

i SYSTEM I _? _ y(t)

n(t)

The output y(t) is given by

y(t) = v(t) +n(t) (211)

where n(t) is assumed to be uncorrelated with x(t) oi"y(t). The simple and

cross spectral relations become

G (f) = G (f) + G (f) = IH (f)12G (f) + G (f) (212)
y v n x n

G (f) = G (f) = H(f)G (f) (213)
xy xv x

It follows that the coherence function between x(t) and y(t) is given by

]H (f)12G (f) G (f)
x v l

_7x (f) = _ -
y Gy(f) Gy(f) i + [O n (f)/Ov (f) <

(214)

As in Case 1, if any noise is present, the coherence function is strictly less

than one, and is inversely proportional to the output measuring device noise

to true output signal ratio. If G (f) << G (f), then
n v
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_xy(f) _ 1- [Gn(f)/Gv(f) ] (215)

The analogous relations to equations (209) and (210) are

G (f) G (f) (f) ^

IH(f)[2 - GV(f) _ GV(f) GYG(f) = IH(01 2 T2xy(f)
x y x

IG I IC- I ^
IH(f) 1 - xv _ xy = IH (ill

G G 2
v x

(216)

(217)

The above relation, equation (2t7), would appear to indicate that use of the

cross spectra2 estimate gives a direct measure of the gain factor. However,

it will be shown later that reduced statistical confidence must be placed on

the measurement when the coherence function becomes less than unity.

Case 3. Noise in Both Input and Output Measuring Devices

For this case the measuved input x(t) and measured output y(t) are
composed of the true signa2s u(t) and v(t) and noise components n(t) and

m (t), respectively.

n(t)
mlt}

y(t)

The measured input and output are given by

x(t) = u(t) + n(t)

y(t) = v(t) + m(t) (218)
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The spectral relations are

G (f) = G (f) = G (f)
X U n

Gy(f) = Gv (f) + Gm (f)
(219)

Gxy(f) = Guv(f)

The coherence function for this case is

[G (f) [2

_,x2y(f _ _ xy
Gx (f) Gy(f) [G (f) + Gn(f)][G v(f) + Gm(f)]U

] Guv(f ) ]2

i G (_)G (t-) G (t)Gv(_)

u m n

Gu(f)Gv (f) + G (f)G (f) + G (f)Gv(f)
U V U

GntDGmtt)"
+

G (f)G (f)
u V

i + (NI/G I) + (Nz/G z) + (NI/G I} (Nz/Gz)
< 1 (220)

where

N I = Gn(f) G 1 = G (f)
u

N z = Gm(f) G 2 = G (f)
V

(221)
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This formula illustrates the behavior that would be expected when reasoning

from the two simpler cases; that is, as the instrument noise to input and

output signal ratios decrease, the coherence function approaches unity.

Simple formulas directly relating the coherence function and gain

factor estimates to the true gain factor do not exist for this third case.

However, slightly different types of formulas are given below.

^ IG (f)l iGuv(f) I_ x7 IH (f)l

lH(f) 12 - G (f) = G (f) +G (f) = i+ [Gn(f)/Gu(f)]
X U n

or

A

IH(f)l = IH(f) 12 (1 + [Gn(f)/Gu(f) ]) 42227

Also,

^ iG (012 G G5(0 {H(012 S
_z IH (f)[] x-y y = u y
'xy (f) = G G G G G G

xy x xy x

{H (f){5

or

G 5

}H(f) }2 2 (f) x(f)

= _xy GS(f )
U

A

-- {H (f)} 2:} (223)
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b. ConfidenceLimits Basedon CoherenceFunction

For the cases considered above, an estimate of the true frequency
response function may be obtained from the measured functions G (f) and

xy
G (f). Let the measured frequency response function be

X

A
A O (f) A

H(f) = xy = [H(f) r e j @ (f)
G (f) . (224)

X

As mentioned previously, although equation (217) apparently gives

a direct estimate of h(f), reduced statistical confidence must be placed on
the results. This is illustrated as follows. It has been shown in Reference

25 that to a very close approximation,

Prob[ ]H(f)- H(f)H(f) < sin e and !_ (f)

k

I - 72 (f) cos 2 e

- O(f) i

(225)

where k is the number of degrees of freedom (df).

The number k is given by

2N
k = 2BT =

m

B = bandwidth

(226)

T = total record length in time

N = total number of observations

m = maximum lag number in autocorrelation estimate.
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Equation (225) is displayed in Figure 71which follows, with k as a function

of 72xv(f). Figure 71 gives three sets of curves; one set for P = . 90, P = . 85,

and P =. 80 when c =. 05 radians; one set when ¢ = . 10 radians; and, one set

when ¢ = . 15 radians. Since sin c _ ¢ for these small values of e, the curves
are satisfactory for a gain factor accuracy of 5, 10, and 15 percent, and a

phase angle accuracy of. 05, . 10, and. 15 radians which are approximately

2.9, 5.7, and 8.6 degrees.

The application of these curves to determine a sample size necessary

to measure a frequency response function with a desired accuracy is some-
what limited at times. This is because the coherence function is not known

in advance, and therefore must be estimated. However, a conservative

choice is usually in order. In this case the above relations will be practical

guidelines.

(a) Example. Iterative Determination of H (f)

A possible application of the coherence function is as follows.

Suppose a linear system is under consideration, and it is desired to estimate

the frequency response function with a known accuracy. First, one would

measure the coherence function by measuring the input and output power

spectra separately as well as tae input/output cross-power spectra. Now,

with a first estimate of the coherence function, the approximate number of

degrees of freedom needed to measure the frequency response function to
the accuracy desired would be determined. Next, H(f) is estimated under

these experimental conditions. A new coherence function measurement

would now be available giving improved information and the process could

be repeated, continuin_ the iterations until desired results were obtained.

(b) Example. Sample Size Requirement

A second application of Figure 71 is as follows. Suppose the

measuring instrument noise is known, or is estimated. Also, assume that

based on this knowledge and approximate expected power spectra of the inpu_

and output, the coherence function of the system is estimated to be _2 = 0.8.

Now assume that a maximum 5 percent error in the gain factor measurement

with a corresponding maximum 3-degree error in the phase is considered

acceptable when there is a confidence of 90 percent of measuring these

quantities that accurately. That is, _xy(f) = . 8, c = . 05, and P =. 90. How

many degrees of freedom are needed for the measurements ? Figure 71 is

entered at the T2 = . 8 value, and the intersection with the top curve corres-

ponding to P = . 90 and _ = . 05 is noted. The value of k is then read off the
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vertical scale which is approximately k = 240. Therefore, about 240 df are

needed to measure the frequency response function under these given conditions.

(c) Example. Measurement Bias Correction

As the preceding analysis shows, the coherence function is a useful

quantity in the general consideration of frequency response functions and their

measurement. If the noise in the input/output measuring equipment is known,

then the frequency response function can be properly determined. As can be

seen by the formula given, quite misleading and biased results could be obtained

if no attention is paid to measurement noise. For example, assume one wants

to experimentally determine in the laboratory the frequency response function

of a linear system. Assume that the noise in the output measuring device is

known to be negligible, but the input device noise is not. Then the formulas

for Case 1 would apply. First one must determine the input measuring device

noise power spectral density which should be approximately constant for most

situations. Then one must apply a stationary random input to the system

and determine the input and output power spectral density functions. From

knowledge of these quantities, equations (199), (203), (207), and (209) could

be applied to determine the gain factor as well as knowledge of the uncertainty
in its measurement.

The above illustration applies to laboratory measurements of frequency

response functions where random input signals are used. In general, frequency

response functions are commonly measured in the laboratory using sinusoidal

inputs. The resulting data analysis for sinusoidal signals are straightforward

without involving power spectra and cross-power spectra functions. However,

the employment of random signal inputs can greatly reduce the total test time
required for a frequency response function measurement. This follows be-

cause the needed information is obtained simultaneously at all frequencies of

interest, whereas with sinusoidal inputs, a separate test is required at each

frequency of interest.
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SECTION X. ACOUSTIC, VIBRATION, AND SHOCK TESTS

A. Acoustic Tests

It is the policy of MSFC to qualify acoustically some of the space ve-

hicle structures and components. In general, any single component or struc-

ture susceptible to acoustic impingement will be acoustically tested separately

from other qualification tests. This is accomplished by testing assemblies to

the latest acoustic specifications which are generated on an individual, rather

than a general, basis. In some instances, however, components may be tested

to the same specification if they are to be located in the same zone of the ve-
hicle.

The acoustic test specification is obtained by one of two methods. If

no actual flight or static firing data are available, the acoustic environment at

the specimen location is estimated using presently available prediction tech-

niques ("Methods of Flight Vehicle Noise Prediction, "WADC TR58-343, Vol-
umes I and II and NASA memorandum R-P&VE-SVE-64-19t). These tech-

niques take into account the number and size of the engines, significant flow

parameters, location of the specimen, flight time, and other pertinent factors.

If reliable acoustic data are available from static firings and/or flights of

similar vehicles, the test specifications may be generated from the measured

rather than the predicted acoustic environment. From the acoustic environ-

ment, the external and internal design criteria can be determined. The expo-

sure durations based upon operational phases are given in the design criteria.

For example, the exposure duration to a static firing spectrum will vary for the

different stages. For a particular stage, it will be the total of the exposure

durations of all the static firings of that stage. In general, there is more than

one acoustic design criterion for each location. This is because different

spectra and noise levels are generated at launch, during static firings, and

during the flight of the vehicle. The test specification is determined from a

consideration of the exposure durations and the design criteria; hence, it is

ensured that the test specification spectrum will contain all of the important

features of the design criteria.

The time duration of the test is obtained by adding the times of the de-

sign criteria, unless one design criterion overall level is much higher than the

others. In this case, the high level design criterion time is taken as the test

specification time. As an alternative, high level and low level tests may be

specified so that a compatibility can be attained between the test levels and
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operational exposure durations. In some instances, the availableacoustic

testingfacilitiesmay not be capable of producing the test spectrum overall

level, and itis, therefore, necessary to testat a lower acoustical level for

a longer period. The increase in testingtime is determined from calcula-

tions based upon the random fatiguecurve for the specimen material.

The tolerances allowed during the acoustical qualification test are as
follows:

(a) The test time shall be within -0 to + 10 percent of the time set

forth in the test specifications;

(b) The overall sound pressure level and the individual 1/3-octave band

levels measured at the specimen location shall be within -0 to + 4 dB of the

levels set forth in the test specifications (without the test specimen installed).

The specimen must be instrumented with a sufficient number of strain

gages, accelerometers, and microphones to enable such things as mode

shapes, transmission loss, panel response, and strain levels to be measured

with some degree of accuracy and reliability. During the test runs, all infor-

mation from these measurements is stored on magnetic tape for future reduc-
tion.

Preliminary test runs include calibration checks, linearity checks, and

sine sweeps at levels lower than the test specification. After this, the speci-

men is tested to the acoustic test specification with frequent inspections be-

tween the test runs. After the initial period of acoustical qualification, the

specimen. This additional testing is important if a limited number of samples

is available for the initial test, so that the statistics Of failure probability can

be taken into account. Doty ("Fatigue Life Safety Margin, " Wyle Technical

Memorandum 65-24, dated December 30, 1965) gives the additional testing

requirements as a function of probability of survival, number of specimens,

and standard deviation fromthe logarithmic normal distribution. For exam-

ple, testing two samples for a probability of survival of 99 percent and a

standard deviation of 0.225, the test time should be increased by eight.

Throughout all tests, the specimen is inspected regularly and thoroughly, and
if any failures occur, the testing is stopped to allow a complete inspection and

fatigue check. If it is practicable, acoustical qualification tests are to be
carried out in a reverberation room.
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In addition to acoustical qualification tests, other acoustical tests are

conducted to determine such paramenters as noise reduction, acoustic absorp-

tion, reverberation time, structural response, etc. A number of separate con-

ditions will affect these parameters; therefore different test systems are re-

quired to study each individual effect. The basic methods used in this field of

structural testing are listed below.

1. IN-FLIGHT ACOUSTIC TESTS

During the flight of space vehicles, a continuous record of the acoustic

field inside and outside the vehicle is obtained from strategically placed micro-

phones. From the data obtained during these flights, the noise reduction pro-

duced by the structure and the response of the structure can be calculated.

These results can also be compared with the values obtained using prediction

methods. This comparison leads to more accurate prediction methods.

2. STATIC FIRING TESTS

During the static firing of a vehicle, measurements of the sound level at

the surface of the vehicle are recorded using microphones attached to the

structure. The instantaneous phase relationship of the sound pressure, at any

two or more points on the surface of the vehicle, can be measured for a given

frequency and a correlation curve (see Section XII for definition) may be cal-

culated. This correlation curve can be used to predict the response of the

structure to the acoustic field. The greatest structural response, for any

particular mode, occurs when the shape of the acoustic correlation curve

corresponds to the mode shape of the structure.

Other microphones located in the near and far field during static firings

are used to measure the intensity of the acoustic field on buildings and other

structures near the test stand. Acoustical tests may also be conducted by

placing the test specimen in the acoustical field generated by the static firing

of a vehicle or single engines. To assist in this method of testing, a Mobile

Acoustic Research Laboratory {MARL} has been constructed at MSFC. Large

space vehicle structures may be mounted on the MARL, which is then placed

in the vicinity of a static firing.
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3. MODEL TESTS

Small rocket enginescan be testedin a "field" containing a radial array
of manymicrophones. The soundpressure level distribution (directivity) can
bedetermined from thesemeasurements. With a knowledgeof the size and
power of the small model rocket engine, one can often predict the soundoutput
of larger engines. This test system is also very useful for investigating other
effects, such as the combustion instability in a rocket engine.

4. REVERBERATIONCHAMBERTESTS

Under somecircumstances, it is possible to use a reverberation cham-
ber to obtain information on acoustic fatigue. The test specimenis placed
within a room which has walls constructed of a hard reflecting material.
Soundenergy is fed into the room from an intense soundsource, suchas a
siren or an air modulator. Multiple reflections within the room produce a
reverberant field with a high soundpressure level. The structure under test
hasstrain gagesand microphonesattachedto its surface which give a con-
tinuous record of the strain inducedby the incident acoustic field.

Somereverberation rooms have additional facilities to enablethe re-
sponseof a structure to be determined in tests involving simultaneousvibra-
tion temperature and pressure variations in addition to the acoustic field.

Experiments to measure the transmission loss of a panelare carried
out in a reverberation room with the specimenmountedbetween the reverbera-
tion room and an anechoicroom. Microphonesplacedeither side of the panel
can thenbe used to record the soundattenuationand the transmission loss of
the panel at a given frequency.

5. PANEL TESTING TECHNIQUES

Sections of space vehicles, or separate panels, can be acoustically tested
by subjecting the specimen to an acoustic field in a progressive wave chamber.

This normally is driven by a high intensity sound source, such as a siren or

an air modulator, the output of which may be fed into an exponentially progres-

sive wave chamber or tube which is often terminated anechoically. Test spec-
imens can be fitted into the side wall of the wave chamber and will receive

acoustic energy at grazing incidence. Other panels, and larger structures,

placed at the outlet of the horn will receive sound waves with varying angles
of incidence.
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Acoustic, vibration, and stress measurementsare takenduring the
period of the test using microphones, accelerometers, and strain gages
mountedon the surface of the specimen.

6. ROCKE T SLED TESTS

The response of full-scaleor model structures to the acoustic fieldpro-

duced by aerodynamic effectscan be determined on a rocket sled test. The

specimen is mounted on a sled structure which is propelled along a track at

transonic or supersonic speeds. Continuous measurements are recorded from

microphones, pressure transducers, and strain gages mounted on the speci-

men; these measurements are used to measure the sound level, panel re-

sponse, and fatigue. Other techniques can be used to detect the pressure of

shock waves in the vicinityof the test panel.

B. Shock And Vibration Tests

Vibration and shock tests at MSFC are conducted on space vehicle corn-

portents, structural items, and complete vehicles. These tests use electro-

magnetic and hydraulic shakers, and various types of shock test machines.

Some tests are conducted according to formalized written specifications while

other tests are for research purposes. These research tests are useful dur-

ing the development phase of hardware and they increase the probability of

success during qualification, reliability testing, and actual flight.

MSFC is capable of conducting almost any conceivable shock and vibra-

tion test representing realistic environments. Most testing does not involve

special techniques or equipment, but rather a creative test design, using es-

tablished test equipment and techniques. Transducers are available to give

voltage analogs for vibratory displacement, velocity, acceleration, pressure,
stress, and other quantities. These transducers are available in a vast

variety of sensitivities and vibration characteristics. High speed photography,

stroboscopic lighting, calibrated microscopes and telemicroscopes are other
measurement methods.

Vibration data may be read out on voltmeters, oscilloscopes, or x-y

recorders, recorded on oscillographs and magnetic tapes, or fed directly into
computers for instant analysis.

Environmental tests may be natural, such as transportation and handling,

or simulated by using a shock or vibration generator. The design or systems
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engineer shouldnot hesitate to request any test which wouldbe of aid in pro-
ducingor improving the desired final item.

Although testing of vehicle componentsis the major activity, vibration
testing of large structural items andcomplete vehicles is also accomplished
at MSFC. Thesestructural tests are not usually run to establish the strength
of the vehicle under vibratory loading, but are conductedto establish the
natural frequencies of the vehicle andthe associatedmodeshapesand relative
deflections of the parts.

To date, the most ambitious vibration tests were conductedon full
scale prototype sections of the SaturnI, IB, and V vehicles. A typical test
setup is shownin Figure 72. The complete assemblies were excited by both
sinusoidal andrandom excitation and the responsecharacteristics were ob-
tained.

1. SHOCK MACHINES

Space vehicles are subjected to high level transient excitation at various

times during vehicle life. Shock testing is necessary to insure component

reliability. The problems involved in defining the shock environment and

simulating this environment in the laboratory are very complex. Because of

the complexity of this problem, two different approaches to shock test defini-

tion have evolved. The first, and simplest approach, is to define the test

environment in terms of the type of shock machine to be used and the procedure

to be followed in executing the test. The second, and presently more popular

approach, is to define the test environment in terms of an acceleration time

history (or the associated response spectrum) to which a specimen must be

subjected.

Two types of shock test machines are presently available at MSFC; a

drop test machine, and a hydraulic-pneumatic shock test machine. The drop

test machine (Fig. 73) consists of a table upon which the specimen is

mounted and a rigid mass upon which the table falls. The table is raised by

cables to a predetermined height, then automatically released. The height

from which the table is released determines the velocity change. The shape

of the shock pulse can be varied by placing rubber pads or triangular-shaped

lead pellets on the rigid mass. A brake restricts any rebound motion of the
table.
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The hydraulic-pneumatic shock machine iUustrated schematically in

Figure 74 is capable of producing a great variety of acceleration wave shapes,

amplitudes, and time bases. The machine develops its thrust through differ-

ential gas pressures acting on two faces of a thrust piston in a closed cylinder.

With reference to Figure 74, operation of the machine is described as follows.

A relatively low gas pressure is maintained in the top gas chamber which

forces the thrust piston against a seal ring seated on its base. In preparation

for firing, compressed nitrogen gas is introduced into the lower chamber to

equalize the force on the top face of the thrust piston. Any increase of pres-

sure in the lower chamber upsets this equilibrium, opens the seal at the ori-

fice and causes the piston to rise. Instantly, the entire bottom area of the

piston is exposed to the lower chamber gas pressure. A thrust on the piston

results, which is controlled by the geometry of the acceleration metering pin.

This limited duration thrust is transmitted to the test specimen by the thrust

column. The forward motion of the thrust piston is arrested as the piston

approaches the deceleration orifice. The deceleration of the piston, and thus

the specimen, is controlled by the deceleration metering pin.

2. ELECTRODYNAMIC SHAKER

The electrodynamic shaker, because of its versatility, is the work
horse of the vibration test laboratories at MSFC. Shakers are adaptable to

many configurations for different types of testing. They can be used individ-

ually for component testing, in series for large structural testing, for certain

types of shock testing, or in combination with a slip table. Slip tables are

presently of the granite type or the hydrostatic bearing type. They are used

to relieve the shaker head of the static load imposed by a heavy test specimen

and to help obtain unidirectional inputs.

The shaker operates on the same principle as an electromagnetic

speaker in an ordinary radio. Basically, the shaker or vibrator (Fig. 75)

is composed of an armature and a powerful, electrically energized field

magnet. When alternating current is passed through the armature windings,

and direct current is passed through the field magnet windings, a strong mag-

netic force is generated between them. This force causes the armature to

move in a direction perpendicular to the plane of the table surface. The am-

plitude and direction of the force is depenctent upon the magnitude and direc-
tion of the armature current, respectively. The amplitude and direction of

the force in the armature determines the acceleration of the table surface.

However, the acceleration measured at the table surface or specimen con-

trol point is not a direct linear function of the force generated by the arma-
ture current. Resonant modes of the specimen armature combination tend to

distort the input acceleration level.
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Figure 74. Hydraulic - pneumatic shock machine.

mAg_r_m _

Figure 75. Electromagnetic vibration shaker.
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If the specimen to be tested is less massive than the armature, the

specimen will have little effect on the acceleration of the table. However,

the first effect of a large mass is to decrease the overall acceleration on
F

the table in accordance with the equation G = _, where W is the weight in

grams, G is acceleration in gravity units, M/SU 2 and F is the force rating

of the shaker in newtons. The second effect of a large mass is to lower the

frequency of the resonance so that the mass supplies a force to the armature.

This force may be in phase with lead, or lag the armature force, and will
therefore distort the table acceleration waveform.

Special provisions are usually made in an electronic network for ad-

justing the input signal to the power amplifier to compensate for electrical

and armature structural responses. Figure 76 is presented to indicate the

general behavior of a loaded and unloaded armature over the usable frequency

range.

log x/Ea
STRUCTURAL RESONANCE

ELECTRICAL RESONANCE /,_ / _*'--- UNLOADED

_%_ LOADED

log f

Figure 76. Armature behavior over usable frequency range.

The steady state or average current (force} in the armature is limited

by the resistive power losses (heat generated} which the armature is capable

of dissipating. The peak current (force} is limited by the voltage that the
armature can withstand without breakdown in the insulation. Vibrators de-

signed for random vibration can withstand peak forces of approximately three

times the average force.
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Thesevibrators, or force generators, range in weight from 18.14 to
15872.5 kg and in-force output from 5.337 to 133440nts. Generally, the
costs of electromagnetic vibrators are muchgreater thanmechanicalvibra-
tors (eccentrics). .Moreelaborate auxiliary support equipment, such as
amplifiers, power supplies, andcontrols, are neededfor electromagnetic
vibrators than for mechanical shakers. Thedesirabilit3- of the electro-
mag-neticvibrator lies in its versatili_" andusable frequency rangeof up to
3 kc. An electromagnetic vibrator cangeneratevery complicated waveforms
suchas broad bandrandomvibrations.

Thethruster is another type of electrodvnamic shaker which is in use
at MSFC. Becauseof its relatively small size, a number of thesevibrators
can beused to apply inputs at various points arounda large structure. This
machineeliminates large, heavy fLxtures and minimizes structure/shaker
resonantcoupling becauseof the high natural frequency of the thruster's
light armature.

3. SINI'SOIDAL-S\VEE P TESTING

The sine sweep tests cons.ist of applying a sinusoidal motion to the

specimen and slowly varying the frequency at some predetermined rate. In

order to produce sinusoidal motions at the exciter table, it is necessaz3- to
generate electrical signals proportional to the desired accelerations. The

sign.'d source for sine sweep testing is the sine oscillator (Fig. 77). The

oscillator generates a low power sine wave signal whose amplitude and fre-

quency are controllable by the operator. This low power signal is supplied

to the power amplifier where its ener_" is increased to a level sufficient to

drive the vibration exciter. If the oscillator signml through the power ampli-
fier was applied to the exciter and a frequency sweep made at some constant

output voltage, we might expect the table acceleration to vary as shown in

Figx_re 76. Since it usually is desirable to maintain some specified accelera-

tion on the table and since the frequency response function of the exciter-

amplifier (Fig. 76) is generally tu_mown before the test, there must be

some means of automatically maintaining the table acceleration level at the

desired value. The simplest means to accomplish this is to measure the ta-

ble acceleration and allow the operator to adjust the oscillator output to main-

tain the desired acceleration level. In practice, this oscillator adjustment is

performed automatically. The desired acceleration level is programmed into

the vibration controller and the monitored table acceleration is compared to

it. Differences between the desired and measured levels are corrected

either by increasing or decreasing the controller output. The additional

capabilit3.- to conn'ol displace ,nt at '_ou" frequencies is usually included in
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the sine control system. Sucha capability allows the operator to control
constantdisplacement levels at those frequencies where the exciter is dis-
placement-limited. As the frequency is increased and reaches a point
where the acceleration is the desired value, the automatic control switches
to maintain a constant acceleration rather thanconstantdisplacement. The
frequency at which the automatic control switches from displacement to
acceleration is knownas the "crossover" frequency.

OSCILLATOR I I

POWER

AMPLIFIER

ACCELEROMETER-__

I I TABLE I I
I I
I t
,VIBRATION

'1 SHAKER I

t_ .I

Figure 77. Functional block diagram of sinusoidal sweep generating system.

4. RANDOM VIBRATION TESTING

The use of random vibration testing, occasionally called random noise

or white noise testing, is increasing rapidly. Random vibration is similar to

many environments measured on aircraft, guided missiles, and space ve-

hicles.

The random vibration test equipment configuration shown in Figure 78

is obviously more complex than the sine test equipment configuration. This

complexity is necessary because the load-influenced transfer function of the

amplifier-exciter must be compensated at all frequencies simultaneously.

Because the random signal contains all frequencies within its bandwidth lim-

its, a sequential equalization, like that employed in the sine test system, is

not possible. One equalization system uses wave-shaping circuits ("peak-

notch filters") inserted in the signal path. This system requires a determin-

ation of the amplifier-exciter (load) transfer function by using a low level
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sine sweep prior to equalization. Once the transfer function is determined,

the wave shaping circuits are adjusted to generate the inverse transfer func-

tion of the system, resultingin a table acceleration with a relatlvelyflatfre-

quency response. Spectrum shaping is accomplished by inserting other

wave shaping circuitswith the desired transfer characteristics. The "peak-

notch equalizer" system is declining in popularity because of the complex

setup procedure necessary and itslack of automatic control.

The automatic equalization configuration shown in Figure 78 is pres-

ently in use at MSFC. In this scheme, equalization is accomplished by con-

trolling the energy in each of many continuous narrow bandwidths. The wide-

band random signal from the noise generator is passed into a bank of contin-

uous filters. The output of each filter is fed into an automatic control am-

plifier. From the amplifier, the signal is fed into a mixer and then to the

power amplifier. The output of the table-mounted (control) accelerometer

is adjusted (the spectrum is shaped) by the operator. The output of each

analyzer filter is then compared to the desired value. The difference signal

is used to adjust the output from the corresponding automatic control ampli-

fier resulting in a spectrum at the table shaped to the desired value. The

additional capability to monitor and record the energy value within each filter

is included in the equalizer. Set-up time is reduced since the equalization

takes place as the test is begun. It is necessary only to program the desired
spectrum shape and level prior to the test.

Figure 78.
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SECTION Xl. VIBRATION AND ENVIRONMENTS AND

TEST SPECIFICATIONS

A. Stage and Vehicle Vibration and Shock Criteria

It is imperative that the vibration environment of future vehicles be pre-

dicted prior to design and development so that satisfactory design and test pro-
cedures can be established. These criteria are essential to the establishment

of high reliability standards necessary for man rated vehicles. The precise

prediction of these environments is highly complex and may not be reached soon.

However, based on measured data and a few simplifying assumptions, adequate

predictions may be obtained provided the necessary assumptions and limitations

are realized by the user.

Localized vibration originates primarily from four sources of excitation:

1. Mechanically induced vibration from rocket engine fluctuation which

is transmitted throughout the vehicle structure.

2. Acoustic pressures generated by rocket engine operation.

3. Aerodynamic pressure created by boundary layer fluctuations.

4. Self excited machinery or components, etc.

Restricting notation to vibrational power quantities, the total vibration at any

point on the vehicle may be expressed as

PT = P/mech + P/ + p/ae mach

where / denotes the vibrational power caused by the indicated source. The

powers add arithmetically since vibrational power is proportional to the mean

square cyclic response. An exact analysis of structural response would neces-
sitate an accurate description of each individual source and the manner in which

they combine. In most cases only one source is the primary forcing function.

Hence, the remaining sources may be considered negligible in regard to the

total dynamic response at any instant of time. However, an expression is given

[equation (229)] which provides an estimate for combined driving functions.
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Rocket vehicle structure may be separated into two dynamic categories:

I. Structure susceptible to acoustic and/or aerodynamic pressures

(i.e., skin panels).

II. Structure not susceptible to acoustic and a_rodynamic pressures
(i. e., structural beams).

The dynamic analysis of these two groups are obviously handled by two different

techniques. Each is explained below.

This group of structures may be subdivided into three sections:

I(a). Skin panels. A panel is defined as a section of skin bounded

by radial and longitudinal stiffeners. This type of structure is directly excited

by impinging acoustic pressures. The direction normal to the panel face exhibits

the most severe vibratory response; consequently, this is the direction usually

considered when referring to panel vibrations.

I(b). Skin stiffeners (such as ring frames and stringers). This

type of structure is not directly excited by acoustic forces but is driven by the

motion of adjacent panels. Thus the stiffeners are indirectly forced by imping-
ing acoustic pressures.

I(c). Bulkheads. These skin segments form the upper and lower

extremities of vehicle propellant tanks. The bulkheads are further subdivided
into:

I(c)-l. Forward bulkheads

I(c)-2. Aft bulkheads

The added mass of liquid loading greatly reduces the vibration amplitudes

experienced by the aft bulkheads; consequently, the two bulkheads are treated
separately.

The equation for predicting the vibration environment of acoustically
(or aerodynamically) susceptible structure is [26]
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the vibration response of the new vehicle structure at a particu-

lar station number. The term G is the acceleration due to cyclic

motion divided by the acceleration of gravity go" Since rocket

vibrations contain many frequencies the response magnitude (G)

is specified in spectral form.

the known vibration response of a reference vehicle structure.

This value has been determined by many measurements and is

also presented on a spectral basis. Further, this parameter

should be obtained from unloaded structure (i. e., structure

which does not reflect the effects of component mass loading).

the thickness of the skin associated with G .
r

the skin weight density of the reference structure.

the impinging acoustic (or aerodynamic) pressure which is

driving the reference structure.

the skin thickness 1 associated with G .
n

the skin weight density associated with G .
n

the acoustic (or aerodynamic) pressures impinging upon the new

vehicle structure. This pressure must also be predicted.

A factor which accounts for the attenuation effects produced by

incorporating additional mass into the existing system.

weight of basic structure.

component weight mounted on W .
n

1. For corrugated or sandwich structure this parameter is an equivalent
thic kne ss.
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Equation (227) applies to randomrms composite values or to sinusoidal

values. For the mean square spectral value, the total expression is simply

raised to the second power. This expression is applicable to localized vibra-

tory environments and is valid for all materials. It is invalid when considering
large sections of vehicle structure (i. e., entire cylindrical tank). However,

the static loading of these large sections is the critical design factor and local-

ized dynamics thereby produce only negligible effects.

Referring again to equation (227}, Pn represents the maximum pressure

impinging upon the vehicle at any time. Three conditions must be considered,
one of which will result as the maximum.

1. Captive-firing environments (applicable to boosters and upper

stages).

2. On-pad acoustic environments.

3. The period of maximum aerodynamic pressure (occurs subsequent

to Mach one; therefore, the combining of engine generated acoustics and boun-

dary later pressures do not have to be considered).

Type H

Now consider the Type II structure. This structure may be subdivided
into two sections.

II(a). Structural beams such as I beams, etc. The components

mounted in this section would not primarily be affected by acoustic pressures
but by rocket engine vibrations.

II(b). Rocket engine components. These components may again be
subdivided into three sections:

II(b)-l. Combustion chamber section. This section includes

the components mounted on the chamber dome or side case.

II(b)-2. Turbopump section. This section includes the

components located on the propellant pumps.

II(b)-3. Actuator assembly. The components located in

this region are mounted on the actuator struts or actuator rods.
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where

The equation for predicting vibrations of these structural types is

Type II(a)

__NTV)n Wr _NTV)n /_v;r )G = G _(NTV) r W F = Gn r r__ + W
n c

(228a)

Type II(b)
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the vibration response of the new structure. This is

considered an input to a component mounted on this
structure.

the vibration response of a reference structure. This

environment is determined by measured data acquired

from unloaded structure.

number of engines, thrust and exhaust velocity of rocket

engine associated with the stage under consideration in
the new vehicle.

number of engines, thrust and exhaust velocity of

rocket engine associated with a reference vehicle.

= an attenuation factor which takes into account the effects

of component mass loading.

= the structural weight corresponding to G •
n

= the structural weight corresponding to G •
r

= the weight of component to be mounted on W .
n
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Equation (228) applies to random rms composite values or to sinusoidal values.

For the mean square spectral density value the total expression is simply

squared. For Type II(b) structure, clustering does not generally affect engine

vibrations; therefore N and N are not considered. Also, for Type II struc-
r n

ture, only once case is considered the maximum. This case is the firing
(either captive or inflight) of that particular stage under consideration. The

vibration transmitted from other stage firings (i. e., booster to upper stages)

is negligible compared to that stage operation. Thus, with a knowledge of the

necessary rocket engine parameters and structural mass characteristics, the

vibratory environment of a new vehicle is shown in Figure 79.

The methods and techniques presented herein will provide satisfactory

estimates of the vibratory environment associated with any particular problem.

These techniques are considered indicative of the present state-of-the-art and

will permit adequate environmental estimates with only a few simple calcula-

tions. It is not imperative that the user thoroughly understand the philosophy

behind the methods. He should, however, realize the necessary requirements

and limitations. A summary of the principal limitations regarding these tech-

niques is given below.

1. The techniques do not apply to entire structure such as an entire

rocket engine assembly or large structural members. They do, however,

apply to components and other items of equipment mounted on these structures.

2. These methods are not applicable for prediction of combined

environments such as excitation due to propellant flow and engine vibration

combined. In some remote cases the type of structure may not be clearly

defined or excitation may be both acoustically and mechanically induced. In

these cases the two methods may be combined and a certain percentage assigned

to each method depending upon degree of structural susceptibility to acoustic

and mechanical excitation. Employment of the respective percentages is left
to the discretion of the user.

Gnt X%G + 1_vG_

where

G = the resultant combined environment
nt
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G = the environment obtained from using Type I methods

G = the environment obtained from using Type IImethods
an

and

X_ + Y°/0-- 1.0 or 100_0

3. This method does not provide frequency characteristics of the new
structure. The method is based on the fact that similar structure has similar

response characteristics. Precise frequency calculations tend to complicate

the problem and it is doubtful that the results would justify the time and effort

required. The calculation of the component natural frequency is, within itself,

possibly a simple problem. In the actual system, however, this frequency is

coupled with the support structure frequency characteristics. The determina-

tion of structure-component coupling effects is a highly complex requirement.

Consequently, adequate frequency calculations and evaluation of these effects

require considerable time and effort.

These techniques rely upon typical structural configurations which have

been sufficiently defined by measured data. Subsequent statistical analyses

describe the dynamic characteristics of the structure with statistical certainty.

Thus, with only a knowledge of the structural geometry and mass characteris-

tics, the anticipated dynamic environment may be established. These tech-

niques are applicable to most rocket vehicle structure -- including corrugated

and sandwich skin construction provtded an equivalent flat plate thickness may
be determined.

The predicted environments represent a statisticalestimation since the

reference spectra should be established by statisticaltechniques. Conse-

quently, the probabilityof the actual environment not exceeding the predicted

environment of a future vehicle is established with a confidence levelindicative

of the necessary vehicle mission. This does not infer thatthe predicted

environment will accurately correspond to a single measured environment.

Certainly, some of the measured responses of a new vehicle willbe signifi-

cantly lower than the predicted. This is to be expected since the criterion is

such thatthe prediction will envelope the greater percentage of the situations.

However, thisproblem is elevated somewhat by the techniques utilizedof

separating rocket vehicle structure intoeight basic categories -- each pos-

sessing essentiallysimilar dynamic characteristics. This reduced the vari-

ance so that the mode value (pointof maximum occurrence) is not greatly less
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than the higher confidence limits. Therefore, the higher percentage criterion

may be used without the concern of over conservatism in regard to a specific

problem.

B. PayloadVibration and Shock Criteria

The techniques previously described have been altered to provide vibra-

tiondesign and test criteria for launch vehicle payloads and payload compo-

nents. A new criteriaphilosophy was deemed necessary because: (i) The

type of structure in the payload area is grossly differentfrom the launch vehi-

cle structure, (2) the payloads and payload components will not be subjected

to staticfiringtests and therefore require test criteria thatpossess the high

degree of confidence dictated by their "one-shot" use, and (3) their use

environment can be simulated better by random vibration criteria. The new

techniques generate five types of vibration criteria:

1. Vehicle dynamics.

2. Sine evaluation.

3. High level random.

4. Low level random.

5. Shock.

These criteria are designed to simulate as nearly as possible the

expected flight environments. The specific purposes of each of these criteria

are as follows=

i. Vehicle dynamics criteria consist of sinusoidal vibration levels

designed to simulate the vibration environment induced by launch vehicle

bending and torsion and by engine ignitionand thrust variations.

2. Sine evaluation criteria consist of sinusoidal vibration levels

designed to evaluate the component's dynamic response characteristics when

itis subjected to vibration levels less severe than the maximum anticipated

levels but of sufficientmagnitude to induce significantdynamic responses.

3. High-level random criteria are random vibration levels designed

to evaluate the componentVs performance when subjected to an input represen-

tativeof the maximum anticipatedspectral intensityof the environment.
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4. Low-level random criteria are random vibration levels designed

to evaluate the component_s performance when subjected to an input represen-
tative of the maximum anticipated energy of the environment.

5. Shock criteria are shock levels designed to simulate the maximum

anticipated shock environment on damage equivalence basis.

Each of these criteria is calculated using the predicted vehicle dynam-

ics, acoustically induced vibration, and shock environments. The following
paragraphs outline how the particular environments are predicted and subse-

quently used for criteria development.

The vehicle dynamics environment is predicted using a mathematical

model of the launch vehicle and payload. The model is forced with inputs

representative of the actual vehicle forcing functions; i. e., wind loads, engine
ignition/cutoff forces, and release and separation forces. The maximum

response of the payload at each significant frequency is computed with these

modal responses being considered as the vehicle dynamics environment. The

environment is enveloped to generate the sinusoidal vehicle dynamics criteria.

Vibration data for the reference structure are gathered and statistically
summarized. These summari, s, consisting of an envelope of the maximum

spectral intensities and an envelope of the average spectral intensities, are

extrapolated to the new structural configuration. The extrapolation relation-

ships used are the same as for launch vehicle components [ reference equation
(227) ], except that the extrapolation relationship is a function of the acoustic

pressure at each frequency rather than the overall acoustic pressure. As a

result of these calculations, a predicted maximum and average vibration spec-

trum is generated. These spectra are used to generate the following criteria:

1. The high-level random criteria are generated by enveloping the
maximum spectral intensities.

2. The low-level random criteria are generated by reducing the

envelopes obtained in 1. to possess the maximum statistical composite value
of all the data samples.

3. The sine evaluation criteria are generated by computing, from

the maximum spectral intensities, an equivalent g response factor (GRF).
This factor is obtained from

GRF i = 1.2_
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where

gi = maximum spectral intensity in any spectral increment i.

fi = frequency associated with the i_ spectral increment.

The equivalent g response factor ateach frequency is plotted, and a sine

sweep level is calculated that passes beneath all plotted points.

Measured shock environments from similar payload structure are

analyzed, and a prediction based on these analyses is made for the new struc-

ture. The analysis is performed in the shock(response) spectrum domain
and therefore generates shock spectrum criteria that are expected to induce

damage equivalent to that induced by the predicted environment.

• j

4 _'.-
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SECTION ×1 I. THEORETICAL CONSIDERATIONS

The preceding sections of this manual have described basically the

methods and facilities employed to obtain, reduce, evaluate, and utilize vibra-

tion data. This section, however, presents a different approach. It contains

applicable reference material for a theoretical and statistical look at vibration

analysis.

The sequence of information presented by the following main paragraphs

does not necessarily indicate the relative importance of the paragraphs. In

some cases a main paragraph may be considered a separate entity, not having

to follow any particular preceding paragraph.

.

A. Vibration Terms - Their Meanings and Uses

DISPLACEMENT, VELOCITY, AND ACCELERATION

Vibration measurements can be in terms of displacement, velocity, or

acceleration. The easiest measurement to understand is that of displacement,

or the magnitude of motion of the body being studied. Where the rate of

motion (frequency of vibration) is low enough, the displacement can be

measured directly with a dial-gage micrometer. When the motion of the body

is great enough, its displacement can be measured with a common scale.

In its simplest case, the displacement may be considered as simple

harmonic motion; that is, a sinusoidal function having the form

x= A sin_t (23o)

where A is a constant, w is 27r times the frequency, and t is the time as

shown in Figure 80. The maximmn peak-to-peak displacement (the quantity

indicated by a dial gage) is ZA, and the root mean square (rms) displacement

is A/_-2(=O. 707A). The average (full-wave rectified average) value of the

displacement is 2A/Tr(=0.636A) while the "average double amplitude" Ca term

occasionally encountered) would be 4A/Tr(=l. 272A). Displacement measure-

ments are significant when deformation and bending of structures are studied.
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In many other practical problems, however, displacement is not the

important property of the vibration. A vibrating mechanical part will radiate

sound in much the same way as does a loudspeaker. In general, the velocities

of the radiating part (which corresponds to the cone of the loudspeaker) and the

air next to it will be the same, and if the distance from the front of the part to

the back is large compared to one-half of the wavelength of sound in air, the

actual sound pressure in air will be proportional to the velocity of the vibra-

tion. The sound energy radiated by the vibrating surface is the product of the

velocity squared and the resistive component of the air load. Under these

conditions, particularly where noise is important, it is the velocity of the

vibrating part and not its displacement which is of greatest importance.

Velocity is the time rate of change of displacement, or the first

derivative of displacement with respect to time, so that for the sinusoidal

vibration in equation (230) the velocity is

dx
v - dt - wA cos c_t . (231)

Thus, the velocity is proportional not only to the displacement but also to the
frequency of the vibration.

In many cases of mechanical vibration, and particularly where mechan-

ical failure is a consideration, the actual forces set up in the vibrating parts
are important factors. Newtonts laws of motion state that the acceleration of

a given mass is proportional to the applied force, and that this force produces

a resulting reacting force which is equal but opposite in direction. Members

of a vibrating structure, therefore, exert forces on the total structure that are

a function of the masses and the accelerations of the vibrating members.

Acceleration measurements are important where vibrations are

sufficiently severe to cause actual mechanical failure. Acceleration is the

second derivative of the displacement with respect to time or the first deriva-

tive of velocity with respect to time. That is,

dv dZx
a - dt = _2" = -c_2A sin _t (232)

The acceleration, thereIore, is proportional to the displacement and to the

square of the frequency.
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There is another use for acceleration measurements. The analogy
cited aboveconcerning the loudspeaker covers the usual case where the cone

or baifle is large compared to the wavelength of the sound involved. In most

machines the relationship does not hold, since relatively small parts are

vibrating at relatively low frequencies. This may be compared to a small

loudspeaker without a baffle. At low frequencies the air may be "ptanped"

back and forth from one side of the cone to the other with a very high velocity,

radiating much sound energy because of the very low air load, which has a

reactive mechanical impedance. Under these conditions the accelerations

measurement provides a better measure of the amount of noise radiated than

does a velocity measurement.

2. SUMMARY

Displacement measurements are used only in instances where the

actual amplitude of motion of the parts is important. This would include

those cases where the dynamic loading because of the operating machinery in

a factory may cause unsafe deflections in flooring and walls or where large

amplitudes of motion might actually cause parts to strike together, thus

causing damage or serious rattle. The deflections observed at the center oI'

a wall panel or beam, for example, can give useful infornmtion about the

stresses acting in these members. The displacement is not directly a meas-

ure of surface strain of the member but is rather an integrated ia_dication of

the strain. The strain measured by the usual strain gage is minute elongation

or compression of material between points an inch or so apart; in contrast,

the displacement measurement referred to above is the bending of material
over a distance of several feet.

Velocity measurements are generally used in noise problems where

the radiating surfaces are comparatively large with respect to the wavelength
of the sound.

Acceleration measurements are the most practical where actual

mechanical failure of the parts involved is of import.-mce .and in many noise

problems, particularly those involving small machinery. A general purpose
vibration meter, therefore, must be able to measure all three vibration

characteristics.

. NON-SINUSOIDAL VIBRATION

Equations (230), (231), and (232) represent only sinusoidal vibrations,

but, as in the case of the other complex waves, complex periodic vibrations
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can also be represented as a Fourier series of sinusoidal vibrations. These

simple equations may, therefore, be expanded to include as many terms as
desirable in order to express any particular type of vibration. It will be noted

that, since velocity is proportional to frequency, and acceleration is propor-

tional to the square of the frequency, the higher frequency components in a

vibration are progressively more important in velocity and acceleration

measurements than In displacement readings.

B. Random Process and Probability Distribution

An example of a random experiment may be illustrated by tossing a

single die to determine how many spots will be on the top face after each toss.

A record of the number of spots that show after each toss is illustrated in

Figure 81.

This graphical result is called a sample function, and a collection of

many of these sample functions forms an ensemble. If many of the random

experiments are repeated, the ensemble of sample functions is an example of

a random process. In the case of the die, the number of spots showing or

I

1 2

Figure 81.

3 4 5 I 7 8 9 10

NUMBER OF TOSSES

Record of a random experiment with a die.

11 12
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thevalue measured is an example o£ a random variable. If x is a random

X X1//2variable, it may be noted that any function of x such as x 2 e or

is a random variable.

Since there are only six sides to a die, the random variable in this

case has only six possible values, and is a discrete random variable.

However, if for the experiment a measurement had been chosen with

an infinite number of possible results, a continuous random variable would

have been defined. Continuing the experiment, the ensemble is observed and

the number of times the value one occurs on the first toss is counted, and is

denoted n 1 . Let N denote the total number of sample functions. Then the

relative frequency of the occurrence of one on the first toss is denoted by

nl/N . Now if N becomes very large, then nff'N will approach a limiting

value. Then the value of nj/N as N -_ _o is the probability of "one" occurring

on the first toss of the die. This probability is written P(1) . A more general

expression may be written

P(x k) = probability that x has the value x k on the first toss

llm nk
= N--=o "N- (233)

where nk is the number of times the value x k occurs on the first toss among

the N sample functions.

The complete set of values P(x k) for all possible values of k is

called the probability distribution of the discrete random variable x. A plot

of the probability distribution of a discrete random variable is shown in

Figure 82.

From the above:

a. The probability of a certain event = 1

b. The probability of an impossible event -- 0

c. 0-< P(x k) <- 1

r
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Figure 82. Probability distribution of a discrete random variable.

d. When different values of x are mutually exclusive,

Xk

P(x I orx z orx kor...) : P(x,) + P(x 2) + P(x k)
(234)

eo

values,

If the random variable can take on no more than M possible

M

_, P(x k)
k=-1

= I (235)

f. A probability distribution function for a discrete random variable

may be defined as follows (Fig. 83):

PCx-<x) = _ P(xk) (236)
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g. P(x -<+ _) = 1 , P(X -< - oo)= 0

h. If b>a, then P(x-< b) P(x-< a) = P(ax_< b) _>0

Extending the above concept to continuous random variables, a prob-

ability distribution function is shown as a smooth curve rather than a step
function (Fig. 84). Now the probability distribution of the discrete case is

replaced by the probability density function which is defined as the derivative

of the probability distribution function and is denoted by the symbol p(x)

The continuous functions and the discrete case have similar properties except
the stuns now become integrals.

X

a. ;(x-<x) = f (237)
_00

cO

b. f p(x) dx = 1 (238)

n

b

fc. p(x) dx = P(a x-< b) for b - a (239)
a

Now there are two means of expressing our random process:

a. An ensemble of sample functions may be constructed (Fig. 85).

b. The probability distribution of the values for any particular toss

may be given. This is written

The above expression simply means the probability that x has the

value x k in the nth toss. In the case of the tossed die, the probability of a

three turning up on the 10th toss is written

P[x3(lO) 1 where x3=3
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Figure 85. Ensemble of sample functions.

The probability applies to a particular toss since the experiment is

across the process, and each toss of the die is an experiment and what hap-

pens on toss (n + 1) is not dependent on the results of toss n . Therefore,

From the above, the random process may be completely specified by

determining the probability distribution in any toss n.

However, it is noted that all random experiments are not independent.

The type of random process to be considered eventually is definitely not one
where successive tosses (or successive intervals) are independent. For

example, consider a large number of spinners whose angular positions can

be refined to an infinite number of possible results, and make the choice of

the spinner used in a particular interval dependent upon the result of the
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for all possible values of k during the nth interval may be specified, but

nothing has been said about the dependence of the (n - 1) interval. The

probability distribution for all k and all n may be determined and still not

show the interdependence between intervals. To do this the concept of joint

and conditional probability distributions are introduced.

, JOINT PROBABILITY DISTRIBUTIONS

Consider a pair of intervals 1 and 2, where the random variable x
(1) (2)

assumes the values x t and x.,] respectively, denoted by x 1 , x.j .

Again examine N s fur_otions. Let ni . denote the number of

(1) (2) "

times the combination x i , x.j occurs among the N sample functions.

Then, the joint probability is defined by

(1,2)

p ....-= ......_,_,j,,
' N--_ N

As before, it follows _at,"- i_ _ .

0 <_ P[xi(1) xj(21 <1

.i (240)

(241)

(1) (2)
If x i has I possibl e yalues_ ,and: xj_ has J possible values, then

(242)

Also, the previous probability

PIx:.,]=t+/,,.x,,.,]
j=l

(243)
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which states the probability of a particular vahm x I in the first interval is

(2)
equal to the sum of its joint probabilities with all possible values of x. in

J
the second interval.

Similarly,

P j , = P xj (244}i=l i ' "

Second order distribution functions may now be obtained from the

joint probabilities. Also, higher order distribution functions may be obtained

from higher-order joint probabilities defined by

Ix 1) (2) (3) 1 :I) i , x. , x,. .... .jJ

q CONDITIONA L PROBABILITY DISTRIBUTIONS

Second order distributionfunctions may now be obtained from the

jointprobabilities. Also, higher order distributionfunctions may be obtained

from higher-order jointprobabilitiesdefined by

where the terms following the vertical bar are given terms.

As before, consider N sample functions. Let ni(1): be the number

of times x.z occurs in interval I, and let ni,](1'2) be the number of times

(1) (2)
the combination x. , x. occurs. Then

z j

Ix ] ""'-p j(2)Ixi(1) lira ni,j = la 1 ' (245)

• = N--.o ni( 1)/N P[xi(1) ]
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(i) (2)
ts expressed as the ratio of the probability that both x i and x. willJ

(1)
occur divided by the probability that x. will occur. The above result, of

1

(1)
course, required that P x. _ 0. This result can be written in the

1

equivalent form

For certain cases, the conditional probability

P [xj(2) I xt(1) 1 PIxj(2)l (247)

(1)
independent of the given Informa_on that x. has occurred. In this case,

i

(1) (2)
the random variables x and x are said to be independent, Now

and the joint probabilities are specified from the first-order probabilities.

The concept of joint and conditional probabilities for discrete random

variables may be extended to continuous random variables in the form of joint

and conditional probability density functions. Considering an ensemble of

sample functions which are continuous functions of time, as for example an

accelerometer signal, a complete description of the random process requires

a specification of the joint probability density function P(xtl , xt2 , . . . , x t )
n

for every choice of times t1, t2, . .. , t and for every finite n. Since
n

this Is nearly impossible for a completely arbitrary random process, it is

necessary to seek means to simplify the specification of the random process

and determine the average value of the sample function in a particular interval.
Tkts Is

xln ! + x2n 2+ . . . + x n
m m

N
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As N-- _o , this becomes

xlP(x I) + x2P(x 2) + . ..+ xN[P(x M)

and is written

M

xk P(x k)
k=-I

The above defines the statistical average, ensemble average, or

expectation of the random variable x and is noted by

E[x] =

M

x k P(x k)
k=-I

(249)

Extending the above for a continuous random variable, using a probability

density function p(x) ,

E[xl = f x p(x) 

Considering a function f(x) of the random variable x ,

(250)

oo

Elf(x)] = f f(x)p(x)dx
_00

( 257)

An important class of functions is

E[x n] , where n= 1, 2, 3, • , , , n , and integer

n
x =power of x.
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Theseare thenth moments by analogywith mechanics.

E[x], the cg line location, is called the mean

E[x] = m (the symbol for the mean)

El(x- E(x))_ is the variance

E[(x- E(x))2] = E (x- m) 2=u2 (the symbol for variance)

Also, it can be shown that o 2= E[x 2] - m 2 ,

a {called the standard deviation).

For a stationary random process, a 2 is a measure of the ac component

power, m 2 is a measure of the dc component power, and Ex 2 is a measure

of the total power.

Up to this point, only averages of a single variable have been discussed.

Extending the discussion to a pair of x and y of discrete random variables.

I J

i=l j=l
f(xi, Yl) P(x l, Yi ) (252)

and for continuous random variables

g_ oo

Etf(x,y)] = f f
_OO _OO

f(x,y) p(x,y) dx dy (253)

The functions of the form

EI(x-m )k(y-m)n 1
x y
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are called joint central moments. This particular one is the (k, n)th joint

central moment. Also, measuring the interdependence of x and y , the

term covariance is assigned when k = n = 1; i. e.,

E[(x-m x) (y-m)] Y

C. Random Processes in Vibration Analysis

The random variable x has been introduced as the value resulting

from a random experiment. The values of x as sample functions were then

grouped to form an ensemble. Also, it was noted that x could have either
discrete or continuous values. The discrete form was used to introduce new

concepts because it is easier to understand from a physical viewpoint.

Emphasis is now shifted from general considerations to the specific

type of random process as applied to vibration work; that is, continuous

random processes as a function of time.

Considering the ensemble of such functions (Fig. 86), the probability

distribution of x at time t 1 and x at t 2 may be described. Also, joint

= x(t 1) and = x(t 2) may be described. To describeproperties of xtl xt2

the joint properties an ensemble average is used. The particular ensemble

ave rage

E[x(t 1) x(t_)] =R(t t , t2) (254)

is called the autocorrelation function and is symbolized by R(t 1 , t2) since

this result, in general, is a function of both t1 and t z . The autocorrelation

function provides a measure of the interrelation of x(t 0 and x(t 2) .

Up to this point, probability functions and ensemble averages at par-

ticular times (which is across the ensemble of sample functions) have been

discussed. However, to obtain an ensemble of sample functions would require

the firing of a large number of vehicles. Now consider the necessary conditions

for the time average of one sample function to equal the ensemble average

across the sample functions of an ensemble.
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The average along one sample function is called the time average. The

time average, denoted by x-"('_', of a sample function x(t) of length 2T is

defined by

T
lira 1

= T-.-_o 2-'T" f x(t) dt . (255)
-T

In general, this result depends upon the particular sample function chosen.

The parameter t, of course, is averaged out so that this result is no longer

a function of t.

The average across the ensemble is the statistical average previously

defined, which at t= t 1 is

Z [x(tl)l

In general, this result depends upon the particular time, t = t1 , chosen.

It should be noted that

x-_ = E[x(tl) l

when random procusses are both stationary and ergodic. These concepts are

defined below.

A random process is stationary if the joint probability density depends

only on time differences and not on the time origin; that is, for all translations

in time t,

P[x (tl),x(t2) ,..., X(tn)] = P[xti+t) , x(t2+t) ,..., x (tn + t)]

(256)

which simply means we can start averaging the function at any point, in par-

ticular E[x(tl)] is now the same for all t1 .
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A random process is ergodic ff it is stationary and if all sample func-

tions are similar such that time averages on any sample function are statistically

eqaivalent to corresponding ensemble averages over the ensemble of sample
functions.

For a stationary process the autocorrelation function R(t i , t2)

becomes a function of the time difference tz - ti only; thatis, R( t2 - ti) .

The time difference is represented usually by v . Therefore, for a stationary

process, letting r = t2- tl ,

R(t I , t2) = R(t 2 m tl ) = R (T) = E[x(t I) x(tI + T)] ,

independent of t I .

Now if a random process is ergodic, then any function of the process

is ergodic. So

<f[xCtl) l> = E[f(x(tl))] = E[f(x(t))] (257)

Therefore, for an ergodic process

E(T) = E[x(t) x(t+ T)] ( 2587

where

T
R(T) = lira 1 f

-T
x(t) x(t+T) dt

Thus the time average of the product of a function at a time

t + T is the autocorrelation function, noted by

t and a time

(259)

R(r) + f(t) f(t+_')
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The autocorrelation function of a stationary process has the following

properties:

a. R(0) = E xZ(t) =o "2+ m 2

b. R(0) -> R(,)= R(-r)

lim
c. RC'r) = m 2

T--.. oo

Result (a) is the mean square value of x(t) at any time t. Result (b) states

that R(T) is an even function of r with a maximum value at T= 0 . Result

(c) assumes that x(t) and x(t + r) are statistically independent for large

r . If the mean value m = 0 , then result (a) shows that the mean square

value equals the variance, and the root mean square value equals the standard
deviation.

D. Amplitude and Frequency Distribution in Random Noise

Many of the most severe vibration environments encountered in current

vehicles result from noise generated aerodynamically by the interaction of the

propulsion jet with the atmosphere and from pressure fluctuations in the

turbulent boundary layer which surrounds the vehicle during flight. Both of

these forcing functions contain energy at all frequencies throughout a relatively

wide bandwidth, and the amplitudes of both vary in a random fashion.

Usually, the amplitude probability distribution in a random noise

forcing function follows the normal or Gaussian probability law. This has

been generally supported by analysis of the two forcing functions mentioned

above. Also, it is usually assumed that the random forcing function is both

stationary and ergodic. To assume stationarlty the statistical properties of

the function must be assumed to not vary with time; therefore, any two

samples taken from a single continuous record of the function must appear

statistically equivalent. To assume ergodicity, any sample taken from a

single continuous record of the function must be statistically equivalent to

the entire record of the function, When stationarity and ergodicity exist,

the average properties of each sample of any record are similar and do not

vary with time, and this permits the use of the time averages rather than

sample or ensemble averages. Also, these requirements permit use of

Fourier transforms to relate the statistical autocorrelation of the forcing

function with its frequency spectrum.
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Many of the random forcing functions which are encountered during

launch and flight vary with time and are neither stationary nor ergodic. How-
ever, the time history function can be divided into several shorter time

periods in which the function is reasonably stationary. When the length of

these shorter time periods is not sufficiently large compared to the time

period of the response, large variations can be expected between the responses

at differing times, because the sample length is not long enough to give the
true averages.

When the force input to a linear single degree-of-freedom system is

random, the response is also random. If the force contains energy at all

frequencies over a relatively wide frequency range which includes the resonant

frequency of the system, the energy at frequencies near the resonant frequency

will be magnified. Therefore, the response will appear to be approximately

sinusoidal with an amplitude which varies randomly with time. Figure 87

illustrates a sample of the response of a panel to random noise excitation. It

is assumed that the instantaneous amplitudes x are distributed normally with

a zero mean and standard deviation x . The normal probability density for
r

(x/x) is shown at the bottom of Figure 87.r

tion of time that (x/x) is between (xl/x)
r r

product of the probability density at (xl/x)
r

The probability, or the propor-

and (xl/Xr) + (AX/Xr) , is the

and the interval (Ax/x r) .

Note that the quantity x r equals the root mean square value here since the

mean value is zero.

The probability density for the peak response x 0 of the lightly damped
single degree-of-freedom system are distributed for very narrow bandwidths

in accordance with the Rayleigh distribution. The Rayleigh probability density

for (x0/x) is illustrated in the upper portion of Figure 87. Comparing ther

normal and the Rayleigh probability density functions, it is clear that the prob-

ability of a zero instantaneous amplitude is higher than the probability of any

other value as illustrated by the normal probability density function. However,

it is improbable that the peak amplitude in any cycle equals zero, as illustrated

by the Rayleigh probability density function where the most probable peak

amplitude is seen to be approximately the rms amplitude, (x0/x r) = 1 .

The probability distribution functions for these two distributions are

given in Figure 88. The probability distribution is the integral of the prob-

ability density and gives the probability that the amplitude ratio is less than

or equal to any value of the ratio. Thus, for the normal distribution of
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amplitudes, it is equally probable that the instantaneous amplitude will be

positive or negative relative to the mean of zero. Further, 85 percent of the

instantaneous amplitudes (absolute values} are less than the root mean square

(rms} value. For the Rayleigh distribution, 39 percent of the peak ampli-

tudes are less than the rms amplitude, 50 percent are less than 1.18 times

the rms value, 86 percent are below 2.0 times the rms value, and 99 percent

are below 3.0 time the rms value. The sample response in Figure 87 shows

that the maximum peak amplitude occurred at the 99-percent level and three

peaks equal or exceed the 95-percent level.

However, the Rayleigh distribution will be expected only in the single

degree-of-freedom system. When additional degrees-of-freedom exist in the

system, additional resonant frequencies will exist. The response will be more

complex and the peak amplitudes will tend to be more normally distributed about

the mean amplitude (Ref. 20, Section 4.9.3). However, if the data are fed

through a relatively narrow filter, the peak amplitudes from the filter will

tend to produce a Rayleigh distribution.

The distribution of (peak) amplitudes in a random forcing function or

response can be conveniently described in terms of the root mean square

amplitude. However, the importance of the distribution of (peak) amplitudes

relative to the rms amplitude cannot be over emphasized for the vibration

engineer. This distribution adds another dimension to the analysis of vibra-
tion data: the evaluation of a vibration environment for either equipment or

structure, and the selection of test methods for the determination of equip-

ment or structural reliability. The necessity of this added dimension results

directly from the fact that the majority of equipment malfunctions occur at

the maximum peak amplitudes and a disproportionate amount of the fatigue

damage to structure is caused by the relatively infrequent peaks.

i. FREQUENCY AND POWER PROPERTIES

To determine the response of the single degree-of-freedom system to

a random forcing function, it is necessary to define the frequency distribution

as well as the amplitude distribution of the random input. The instantaneous

power dissipated by damping equals the instantaneous dampling force times

the instantaneous velocity of the motion. Therefore, the average damping

power (Pd) which is dissipated between time t I and t 2 is the integral of

the instantaneous power during the time interval divided by the duration of the

interval, or
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t2
1

c _2 dt

Pd - (t2- tl) tl
J

(260)

where ck is the instantaneous damping force and k is the instantaneous

velocity.

Since c is a constant (when viscous damping can be assumed), the

damping power equals c times the average or mean value of the square of the

velocity during the time interval. Hence the equation for Pd could be written

Pd = c'_2- (261)

where'_ is the mean square velocity (or the square of the rms velocity). It

is convenient to utilizethe concept of damping power in the definitionof the

frequency distributionof the random forcing function or response. For example,

consider a random forcing function which contains force components at all

frequencies within the frequency region between fl and f2,and which excites

a single degree-of-freedom system consisting of only a viscous damper. Ifthe

damper were separated from the forcing function by a series of unity gain

filterscovering the frequency range between fl and f2, each with bandwidth

Af, the power dissipated in the damper resultingfrom the portion of the forcing

function passed through the filterof frequency f is
a

aP = c'_ / (262)
a a

A_ a is the mean square velocity resulting from the portion of thewhere

forcing function of bandwidth Af centered on frequency f .
a

The power spectral density (PSD) at frequency f is simply the
a

damping power per cycle per second, or

AP c A_-_

PSD - a a- - c (f )
Af Af a (263)
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and the total power Pd between frequencies fl and f2 is the sum of the

mean square velocity per cycle per second times the bandwidth Af and the

damping constant c throughout the frequency range

f2 f2

Pd : CPSD) f: c' r Af
fl fl

(264)

Because of the convenience of the power spectral density approach the

term is often applied to accelerations or displacements as well as velocities.

Further, when applied to these other quantities, it is tacitly assumed that

the value of c is unity and the result becomes the power spectral density of

the function (either in displacement, x; velocity, 2; or acceleration, _).

To avoid confusion, it is often preferred to speak of mean square value (dis-

placement, velocity, or acceleration, depending on the quantity used) per

cycle per second rather than power spectral density. This distinction allows

the reservation of the word "power" for actual mechanical power.

The response of a single degree-of-freedom system, with frequency

response function H(w) and spring constant k, to an applied random forcing

function which is characterized__ a continuous distribution of mean square
force per cycle per second, F z (f), is given by the sum of the mean square

response associated with each narrow frequency band Af. However, it is

desirable to use the mean square force per radian per second, which is

(f)/27r and the bandwidth A. Then

2_'k _- ill(.,)_2 A w (265)

and the total mean square response, x 2, is the sum of the response in each

_._, from wl to w2:

I E F_-(f) 'H(¢_);_-_ 2_"= m _ ; AU; . (2661
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Whenthe forcing function is constant throughout the resonant frequency

range, it can be shown that the total mean square response is given by

x--_ = n n (f)_ Q24k2 4Q -'U-- (267)

= 2_r f equals the natural angular frequency of free undampedwhere w n n

oscillations and Q = IH(w )i. The total mean square response equals an
n

effective response bandwidth (Wn/4Q) time Q2 and times the mean square

force per cycle per second divided by the square of the spring constant. This

mean square resonant response _ to a random forcing function of constant

F"_'(f) differs from its mean square response to a sinusoidal forcing function

of mean sqaure value -_r-, which coincides with the natural frequency and has

the same magnitude as _'_ simply by the effective response bandwidth

( n/4Q) •

Hence, the mean square resonant response to a random forcing
function of constant _ Is pJ:oportional to Q times file mean square per

cycle value of the forcing function; whereas in the sinasoidal case, the mean

square response is Q2 times the mean square value of the forcing function.

This provides an important and practical distinction between these two
situations.

E. Vibration Excitation Sources

Vibration excitation sources and their characteristics are discussed

in Section VIII and are considered here in a general fashion to show their

role in the overall vibration problem and to indicate possible areas of
difficulty.

These sources of excitation can be divided into four major categories:

acoustic noise, various types of aerodynamic disturbances, free atmospheric

disturbances, and mechanical disturbances. Each of these categories con-

sists of essentially different types of disturbances which create a wide

variety of forces on the structure, and may include localized forces acting

at fixed points, pressure disturbances over areas ot' the structure ranging

from the relatively small to those of the entire vehicle external skin, and
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forces and pressures which are essentially stationary (spatially) or propagating

over the structure.

Excitation sources are often defined by quasi-sources parameters

which do not always define the actual source phenomenon, but which partly

describe the effects which these stimuli create on the structure. As an

example, rocket engine acoustic excitation is often defined in terms of the

distribution of sound pressure level over the skin. Also, rocket engine

combustion instabilities are defined in terms of the force acting on some

structural link attached to the engine.

It is usually assumed that the various sources of excitation can be

considered as independent in predicting structural response. However, for

similar types of sources, such as aerodynamic sources, coupling may occur

which, because of nonlinearities, will produce a combined source whose
characteristics are different from those of the original sources. For example,

coupling may occur between attached shock waves, boundary layer disturbances,

base pressure fluctuations, and acoustic noise. For refined predictions, such

coupling effects may be of considerable interest.

The response of certain structural elements of the vehicle constitutes

a second type of coupling which can alter the characteristics of the excitation

source. Burning instabilities of liquid rocket engines, for example, may

induce excitation of the fuel feed lines which in turn cause pressure fluctuations

in the combustion chamber. Mechanically-induced vibrations originating with-

in certain equipment items will feed back through the equipment and may,

under some circumstances, alter the internal unbalanced forces causing the

response. Skin panel responses to boundary layer disturbances form another

example of this type of coupling by altering the shape and thickness of the

boundary layer and by producing additional pressure fluctuations which travel
downstream to further alter the boundary layer.

Response of the structure is also important in the production of new
sources of excitation. The additional sources may in some cases be of

secondary importance, such as the acoustic noise generated within the closed

pressurized vehicle by skin response to external acoustic excitation. On the

other hand, response of the entire structure to free atmospheric disturbances

can produce significant aerodynamic forces resulting from angle of attack

changes which clearly are not part of the original sources of excitation.

It is desirable to isolate the source parameters from those of the

propagation or excitation-to-force transfer parameters, and also to determine
the source-to-source coupling, the response-to-source coupling, and the
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response-to-source initiation parameters. This may be very difficult to do

at the present time and for many types of excitation and structures this may

never be feasible. However, conceptually this does represent a more system-

atic approach to the overall description of what is generally classified as
excitation sources.

Since the sources of excitation often consist of random-type phenomena,

the description must be statistical.

Random forces, or force components, are definable only in terms of

the statistical averages of estimated or measurable properties of the force,

such as the mean, mean square, correlation functions, and power spectral

density functions. Well defined forces do not in themselves present any

difficulty in the vibration response problem, and can usually be treated

separately from the random forces.

It would seem that a complete description of random force functions

will never be attained under any circumstances and fortunately, for practical

engineering applications, this will be unnecessary. However, improvements

can and should be made to advance the state-of-the-art by investigating more

statistical averages than are presently used. Justification for this lies in the

fact that the accurate prediction of structural fatigue life depends upon the

accuracy of response predictioDs, which can be made with no greater degree

of certainty than that of the information used to describe stimulus and transfer

properties.

1. STATISTICAL PROPERTIES OF THE RANDOM FORCE F(0

Of the statistical averages presently used, the most common are

concerned with the amplitude F(t) of an oscillatory, unidirectional random

force acting at a fixed point and containing a continuous spectrum of frequencies

with arbitrary phasing. Although the statistical averages are difficult and

time consuming to obtain in practice (unless electronic computing devices are
used), the necessary expressions and concepts are easily established.

Statistical averages must be determined from a sample of data obtained

from repeated experiments or trials of the same random process. For the

case being discussed, this sample data would consist of a set of N records,

Fk(t), (k = 1, 2, 3 .... , N), obtained from measurements of F(t) at some

fixed point x and direction _I, on the vehicle over the same time period for

repeated flights of the same type vehicle. For example, a flush-mounted
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microphone located at a given position on the vehicle skin could record the
amplitude variation of soundpressure level at x during numerous launchings
or flights, Different vehicles (even the same type of vehicle in design and
performance) will have slightly different characteristics and will often be
launchedunder varying conditions of thrust, trajectory, weather, etc. The
characteristics of the random process causing F(t) will thus changefrom
record to record, and it may be impossible to obtain two records of the same
random process. Unless the variation betweenthe different records is very
significant, the individual randomprocesses occurring during each flight could
be thoughtof as beingpart of a more general random process whosevariation
is sufficiently broad to include the variations between the different force

amplitude-time records.

By knowing the time scale equivalence between the various Fk(t)

records and by aligning these time coordinates along a vertical scale, the force

amplitudes Fk(t), as shown in Figure 89 constitute an ensemble. This ensemble

statistically represents the random process which characterizes F(t).

Unless the simplifying assumptions of stationarity and ergodicity

(discussed later) are imposed on this random process, the statistical averages

of F(t) will vary with time and hence must be determined from this ensemble

by averaging over the amplitudes Fk(t i) for each fixed time ti, say tl, t2,

t3, ... The mathematical expressions for the mean, mean square, standard

deviation, autocorrelation function, and power spectral density function are

listed below for a general nonstationary, nonergodic force function F(t). These

expressions are given for the exact case in terms of known probability density

functions, PF(2, t), and for the approximate case where these are not known.

The symbol E[A] is used here to denote the expected or mean value of the

random variable A.

1V[ean:

E [F(ti)] = _F(ti) _ ~ 1___ _ Fk (ti)f zpF (z,t i) dz ~ N
-_ k=l

(268)
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Mean sqaure:

N

l__. _, Fk 2 (ti)
-_ k= I

(269)

Note that the above nonstationary mean and mean square values are functions
of time.

Standard deviation:

art i) = _] F2(t i) - F(t 1) 2 (270)

Nonstationary autocorrelation function:

RF(ti, t.) = E[F(t i) F(tj)] = _F(t.) F(t.)_J 1 j

=/f
--OO _Off

z1 z 2pF(zl, ti; z2, tj) dzl, dz 2

N
1

Iq _ Fk (ti) Fk(tj) (271)
k=-I

Nonstationary power spectral density:

_o _ j2_r(f, t. - f. t.)
11 jj

SF (fi' fj) = f f R F (tt, t.) e dt. dt.
_oo _oo J 1 J

(272)

Note that the nonstatlonary autocorrelation function is a function of both t. and

tj, and the nonstationary power spectral density function is a function of b_th

f. and f..
1 j
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The first-order probability density function PF (z, t i) is the probability

density function for the amplitude F(t) at time t =t t and pF(z,ti) dz equals

the probability that at t = t. the amplitude F lies in the interval z < F < z + dz.

The joint probability density function pF(zl, ti; z2 tj) is the joint probability

density function for F(t), which multiplied by (dzl) (dz2) equals the probabil-

ity that F lies in both the intervals.

z i<F < zl+ dz 1 at t=t i

z2 < F < z2+ dz2 at t= t.
J

The pF(z,tl) functions are estimated by sampling the various Fk(t)

records for fixed values of t = ti, and constructing the usual relative frequency-

of-occurrence graphs. The joint probability density function pF(zl, ti; z2, tj)

is a function of two variables, _'1 and zz, and hence is geometrically described

by a surface. The larger the data sample size, N, and the smaller amplitude

intervals tested, the more accurately the force probability density functions can
be determined.

It is often assumed that the random process being characterized is

stationary. This implies that the averages are invariant with respect to time.

Thus, the ensemble mean <F(t)> and mean square < FZ(t)> may be deter-

mined at any time t. All of the force amplitude Fk(t) used to obtain these

averages must correspond to the same value of t. The autocorrelation function

which generally depends upon two values of t, say t i and tj, will now depend

only upon the time difference _- between t t and t.. The mathematical expres-J

sions for the first few statistical averages, shown above, reduce to the following

simpler forms for a stationary random process:

Letting t0 be equal to any time, one obtains the following results.

Mean:
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E IF] = <F> = f zpF(z,t0) dz _ _ _ Fk(t0)

-.o k=l
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Mean square:

E [ F 2] = <F2> = zpF(z,t0) dz = _ F_(t0) (274)

Standard deviation:

or= %] F2> - <F> 2 (275)

Stationary autocorrelation function:

RF(T) = E[ F(to) F(t0+T)] f / ztz2PF(Zl, to; z2, to + v) dz Idz 2

N
i
_ _ Fk(t o) Fk(t O+r)

k=-I
(276)

Stationary power spectra/density (two-sided) :

oO

-i2_rfr
SF(f) = f RF(r) e dr ;

--oO

-_< f < _ . (277)

The above two-sided power spectral density function SF(f) is an even

function of f, defined for negative f as well as positive f. The one-sided real-

izable power spectral density function G F (f) is defined only for positive f

and is related to SF(f) by the expression
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GF(f) = 2 SF(f) 0_ f<

thus,

= 0 f < 0 (278)

oO

GF(f) = 2 / RF(T) e -j2_rff dr ; 0< f<_ . (279)
--00

For a stationary random process, the autocorrelation function RF(r)

is an even function _; that is, RF(-r) = R(T). Hence the above power spec-

tral density functions are given by

ao

SF(f) = 2 / RF(T) COS 21rfT dr ; _ < f < _o
0

GF(0 = 4 / RF(_) cos 2_rfr d-r ; 0 --<f<
0

(280)

The inverse relations yield

RF(_) = /GF(f)
0

cos 21rff df

O0

1/2 SF(f) cos 2_rfT d£
(28t)
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If the ensemble is composed of time records of F(t) which are suf-

ficiently long, the ensemble statistical averages may change significantly with

time. For example, suppose that F(t) shown in Figure 90 is typical of other

records in the ensemble. The random process associated with this F(t) will

be nonstattonary ff it is not compensated for by other records in the ensemble.

However, it may be segmented into time intervals, (0,t 1) , (tl, t 2) , (t2,...),

such that during each interval the random process can be assumed stationary.

Stationary statistical averages can then be determined for each segment. Only

one record of the ensemble is shown here, but it is assumed that this one is

typical of most of the Fk(t) records in the ensemble, with respect to the

locations of the ends of the stationary segments. If this record is not typical

of all but a negligibly small number of the N ensemble records, then consid-

erable error may be introduced by assuming stationarity over these segments.

_ t

Figure 90. Time record of a nonstationary random force function.

A further simplifying assumption is usually made that the random pro-

cess which characterizes F(t) is ergodic. The combined assumptions of

stationarity and ergodtctty imply, in addition to the invariance of the ensemble

statistical averages with time, that any one of the Fk(t) samples of F(t) is

statistically equivalent to the entire ensemble. Thus the statistical averages
defining the random force function F (t) may be obtained by timewise integra--

tions, thereby eliminating the immediate requirement for the probability

density functions. The mathematical expressions for the statistical averages

then become:
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Mean-

E [F] -'- F =

T

limT._.o__1 Tf F(t) dt
1

(282)

Mean square:

T

E [F2] = F-{ T--_lim__i fT= 9._ F2(t) dt (283)

Autocorrelation:

T

RF(T) = E F(t) F(t+ r) = T--oolimi_.'_ f F(t) F(t+T) dt . (284)
-T

Power spectral density:

_o

GF(f) = 2SF(f) = 4 __RF(_') cos 2_rf_ d_- ; 0-< f < .o . (285)
0

Although the probability density functions are not required in obtaining

the statistical averages of F(t) for a stationary and ergodic random process,

these functions are of importance and should be determined. A method has

already been outlined for approximating these functions from ensemble

samplings. Time averages are often used when an adequate and representative

ensemble is not available. Hence when the assumptions of stationary and

ergodicity are imposed, the probability density functions may have to be

obtained from a single time record of F(t). The method previously presented

for approximating pF(z,t) is still valid, except that pF(z,t) becomes

pF(z), and the data sample would consist of say N' values, F(t k) ,
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(k-- 1,2,... ,N T) , of F(t) measured at even intervals of time as shown

in Figure 91. It is important that At be sufficiently small to ensure that

the highest frequency amplitude variations are weighted equally with those

of the lower frequencies. Bendat [ 241 indicates that at least two sample

readings per cycle should be made for the highest frequencies and that 10

to 20 sample readings per cycle might be practical estimates.

F (t! [

at

Figure 91. Amplitude sampling of F(t) at even intervals of time.

Stationarity of the random process assumes, by definition, that the

effects of all starting transients can be neglected and, hence, that the process

has always occurred with no changes in its statistical properties (i. e., it

began at t = --_). Also, the exact statistical averages of the random process

can only be obtained ff the sample size is infinite, which necessitates infinitely

long records. For practical applications, this type of precision is unwarranted

and sufficiently accurate results can be obtained for finite, but large, data
samplings.

Some degree of nonstationarity exists in most random processes which

have a physical origin, so that ensemble averages should be used in determining

the statistical properties of F(t). This, however, is undesirable at the pres-

ent time for a number of reasons. First, the quantity of data generally avail-

able for statistical analysis, in practice, is often meager and of limited

accuracy. This is partially due to the difficulties encountered in duplicating

any given random process, which thus restricts the number of ensemble sample

records that accurately represent the particular random process being investi-

gated. Even though either numerous records or long time records or both

may be available, they may contain spurious information introduced by the influ-

ence of other random or nonrandom physical processes.
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Secondly, whenadequate and accurate representative samplings are

available, the data reduction can be a heavy task. It would thus certainly be

necessary to use high speed digital computers if a statistical analysis of any

quality were to be made.

Finally, there is a great desire on the part of analysts to take fall

advantage of the simpler time averaging expressions which are valid for sta-

tionary and ergodic random processes. Analog computing techniques are

readily available and relatively easy to program, which can efficiently deter-

mine at least the first few, and most important, statistical averages. The

assumptions of stationarity and ergodicity are therefore widely used with

segmented time records as a first approximation of the statistical averages.

The block diagrams shown in Figure 92 illustrate the simple procedure

for obtaining the mean, mean square, autocorrelation function, and power

spectral density function for a single time record F(t) by means of electronic

analog techniques. The function F(t) must be fed into the circuitry from

magnetic tape.

In practice, the length of the time records of F(t) may be relatively

short, and in real time may contain only one second or less of recorded data.

To increase the sample size, the ends of the magnetic tape may be joined,

forming a loop, which can then be repeatedly analyzed electronically as a con-

tinuous uninterrupted F(t) signal. This effectively increases the time dura-

tion of a random process and assumes that the process is stationary.

If a number of representative samples of F(t) are available, and if

electronic analog techniques are to be employed, the statistical averages may

be evaluated as time averages for each record and the set of statistical results

obtained from all of the samples may then be further averaged as an ensemble.

For example, if the mean value F k has been determined for each of N records

(k= 1, 2, 3, . . . , N), by the time averages,

T
1 (286)

The ensemble mean F of all the N records is given by the expression

N
( 2877
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Similarly for the mean square and autocorrelation function:

T

Ft_ - T f FkZ(t)dt
0

(28S)

T
1

Cr)- T f
RFk 0

Fk(t) Fk (t+_-) dt
(289)

Then, the ensemble average yields

N N
1 1

- 1_ k=-i)_ -_rk; RF(_-)- _ _ RFk(_') . (290)k=-i

The ensemble power spectral density function would then be most con-

veniently determined from the resultant autocorrelation function RF(T)
using the expression

oO

GF(f) = 2SF(f) = 4 f RF(T) cos27rfv dr ; 0-< f<_o . (291)
0

If in future analyses, computing equipment and programs become

available to determine both ensemble and time averages for segmented records,

the choice of the proper method to use should be based upon the number of

samples available and the length of these samples. Bendat [ 24] indicates that

many samples of short records are more appropriately analyzed by ensemble

techniques, with time averages employed for a small number of long records.

2. INTERPRETATION OF STATISTICAL AVERAGES OF F(t)

All of the above expressions for the mean, mean square, and auto-

correlation function are independent of frequency, and therefore represent the

statistical averages of F(t) over all frequencies that are contained in F(t).
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This type of information is of limited value as it does not show the relative

importance of possible high amplitude persisting frequency components of F(t;,

nor the general distribution of power throughout the frequency range of F(t).

Since structural response is strongly dependent upon the frequency of excitation,
it is necessary to determine these statistical averages for certain discrete

frequencies and frequency bands. For example, the power spectral density

function is one of the statistical averages used to describe the mean square

of F (t} in terms of its frequency components. In the following discussion of

the properties of the statistical averages of F(t), particular attention will be

given to spectral characteristics of these averages.

The components of F(t) contained within certain frequency bands or

at discrete frequencies are obtained in practice by filtering techniques. If

F(t) is stored on magnetic tape, it can be passed through a set of electrical

filters which transmit only those frequencies within the bandwidth of the filter.

The action of these filters is closely associated with the Fourier series and

Fourier transform, which display the theoretical frequency components of a

function. The convenient mathematical forms provided by Fourier methods

are very useful in explaining the actual frequency content of F(t) and in the

interpretation of results obtained by filtering. It is important to consider

briefly the spectral properties Of F(t) itself and the problem of filtering

before considering the spectral properties of the statistical averages of F (t).

The following discussion is not intended to be mathematically rigorous or

sufficiently precise to include all possible types of functions. The arguments

presented are directed toward the practical aspects of the problem.

Consider first that the function Fit) is well defined of period 2T and

contains a finite number of constant peak amplitude frequency components

which remain unchanged for all time (i.e., from t = __o to t = +_). Such a

function is stationary and can be expressed by the finite Fourier series,

N

= a_ + _ (a cosw t+ b sinw t)F(t_
2 n n n n

n=l

N

= t + _n }c o + _ c ncos (_n
n=l

(292)
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where

C = J a 2 + b 2n n n

c o = ao/2

4),n- tan-t (bn/an) =

peak amplitude of the nth angular frequency

= 2_rf = 2_rf 0where f0= (1/2T)component w n n

phase angle of the nth frequency component.

T

1 fa - F(t) cos w tdt
n T n

-T

T
b = --1 (" F(t) sin w t dt

n T J n
-T

(293)

27T

= nO9o, (-_o -COn 2T
- basic Fourier angular frequency.

All of the an'S , bn'S , and Cn'S will be zero except for those which

correspond to values of w which appear as discrete frequencies in F(t).
n

The amplitudes of the various frequency components are easily obtained

for an F(t), known to contain only discrete frequencies, by electrically filtering

F (t) through a variable frequency bandpass filter of bandwidth Aw b = 2 _rAf b.

The block diagram in Figure 92 shows the essential equipment required for

this process and Figure 93 shows a plot of the typical characteristics of such

a filter relative to some centerband frequency w .
c

The amplitude of each filtered frequency component of F(t) is given by

the product

Cn (filtered) = A(Wc, Wn) Cn " (294)

Thus, each filtered amplitude c may be obtained by sweeping w
n c

through the entire frequency range of interest so that w is made to coincide,
c

one at a time, with each of the frequencies w . If the bandwidth is sufficiently
n
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narrow, only one frequency component will be transmitted to the recorder for

each fixed w , and the filtered wave in each case will be a pure sinusoid of
c

constant peak amplitude. If, however, more than one frequency component

is transmitted, the filtered wave will be modulated and the individual amplitudes

of the unfiltered wave may be more difficult to obtain. Therefore, it may be

desirable to use narrower bandwidth filters to separate close frequencies.

A lower practical limit to the bandwidth does exist, but these limitations are
not discussed here.

Finally, the information obtained by filtering out the discrete frequency

components of F (t) can be presented in the form of a bar graph as in Figure 94.

Only the component amplitudes c are shown, as phase data is generallyn

not obtained in present data reduction systems. For many dynamic problems,

it is important that the phasing be known, and in the future it will be desirable

to measure this quantity. This phasing, for a periodic function, can be
obtained from the above time integrations for a and b .

n n

The above finite Fourier series can be extended to include functions

having period 2T which contain an infinite number of frequencies which are

all multiples of the basic angular frequency Ir/T.

_Y

O

w

.J

>

091 _o2 O2 ----.,,,,,,e_

Figure 94. Bar graph of the amplitude of filtered discrete

frequency components.
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Generally, the function F(t) is random and has no finite period (i.e.,

T-_). This is true for both stationary and nonstationary random functions•

Such functions cannot be represented by the Fourier series as they contain a

continuous band of frequencies which are not multiples of some basic frequency.

{For an infinite period, this basic frequency is zero. ) The spectral character-

istics of the function must be described by either its Fourier transform or by

its power spectral density function. It is assumed here that neither the transform

nor the spectrum function are trivially zero or infinite in amplitude.

Following the approach used by Bendat, the above Fourier series (N_oo)

can be rewritten in the complex form

Jwnt
F(t) = _ A e w = 2_rf ; j =

n n n
n._- __

1 T l i,Wnt I

A - _f F(t) e dt - Ca - jbn) n_0 (295)n 2T 2 n '
-T

A o = ao/2 , IAn[Z = Cn2,/4

where (g0 is equal to It/T, and F(t) is of period 2T.

As the period T approached infinity, T-_, the basic frequency (g0

approaches zero, which shows that more and more frequencies are contained
in F(t) Thus the coefficient A and hence a and b approach zero,

• ' n' n n '

which implies that the amplitude c of the individual frequency components
n

also approach zero. However, as T--*_o, the ratio 2_rA /(g0 becomes the
n

Fourier transform

lli_ 21rA _o

w0...0 n = f F (t) e -j(gt dt = _F ((g) " (296)
(gO _or
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The Fourier transform of Fit), when it exists, may therefore be used

to describe the frequency characteristics of nonperiodic functions. This

transform exists for a limited case of nonstationary functions, where the total

energy associated with these functions is finite. Typical examples of these

functions are isolated pulses of various shapes, or a finite train of pulses.

Examples of the Fourier transform for three types of pulses are presented in
Figure 95.

If F (t) contains a sinusoidal component of nonzero amplitude at some

frequency _, then the Fourier transform _F (w) will exhibit an infinite spike
at _.

For stationary nonperiodic random processes, the total energy associated

with F it) is infinite and the above Fourier transform is also infinite. In this

case the spectral properties of Fit) are displayed by the use of the one-sided

realizable power spectral density function GFiw). Formally, this function may
be defined as

GF(W) = T--*_o T " i297)

Although I_F(W) I is infinite, this ratio exists and is finite for

nonperiodic F I t). If F I t) contains a sinusoidal component at frequency _,

then GF(W) will exhibit an infinite spike at the frequency. For nonstationary

functions, where the Fourier transform exists, the power spectral density

function will be zero, except for periodic components where it will exhibit

infinite spikes. Since well-defined oscillatory functions contain periodicities,

it is not possible to show a diagram of some analytical function and its

corresponding power spectral density. Such spectrums must be determined

from a statistical analysis of a recorded function resulting from some physical
random phenomenon.

It is now clear that the filtering techniques used for functions which

contain a continuous band of frequencies must be altered somewhat from those

discussed above for periodic functions. Because the amplitude of each

frequency component is zero for such functions (except for additional discrete

sinusoids), it is necessary to filter a narrow band of frequencies and determine

the statistical averages of the amplitude of the filtered signal over all frequencies

in that narrow band. Since it is more desirable to use electrical filters, with

the function Fit) stored on magnetic tape, the time averages associated with
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stationary and ergodic processes are preferred over ensemble averages

because of available electronic analog methods for determining these averages.
The above discussion shows that the nonstationary functions which are of

practical interest (i. e., those containing a finite amount of energy) are

transients that appear in the form of isolated pulses and shocks. These are

difficult to filter because of the small sample sizes available - usually one or

two records which are small fractions of a second in length. The following

discussion of the statistical averages of the frequency components of F(t)

will then be confined to stationary and ergodic random process, or those

processes for which the assumptions of stationary and ergedicity closely
approximate the actual conditions.

In many random processes occurring in nature, the mean value of the

oscillating amplitude of a random variable, say F(t), is approximately equal

to zero. Also, the time variation of the amplitudes of the individual frequency

components of F (t) will have a near zero mean value. The assumption that the

mean is zero is widely used in practice. Whether or not this assumption is

valid naturally depends upon the random variable being considered. For example,

the distribution of the amplitude peaks of F (t) may be Rayleigh, which cannot
have a zero mean.

The mean square value F_ of F (t) has a special physical interpretation

that is fundamental in spectral analyses. The instantaneous power dissipated

by a resistor R is an electrical network equals I2R or E2/R, where E is the

voltage drop across the resistor and I is the resistor current. Analogously,

the instantaneous power P(t) dissipated in a structure having viscous damping
c and vibratory velocity v equals cv 2 or AFt(t), where A is a constant

of proportionality. The average power P is the time average (mean of the
instantaneous power), avg

T T
1 A

Pavg = _- f P(t) dt = _- f F2(t)dt
0 0

(298)

and hence is proportional to the mean square value F-_ of F(t).

p ;
avg
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that is, a knowledge of overall mean square value of the applied force F(f)

indicates the amount of power being (tissipated in a linear structure, to within

a constant of proportionality.

To broaden the use of the power concept so that the techniques which

have been developed for its application can be extended to include random

variables, for which true damping power does not exist, the proportionality

constant A is dropped and the mean square value of the random variable is

called the total average power of the variable. It may be more appropriate

for such cases to retain the "mean square" terminology. Both of these will

be used here _) avoid possible confusion with existing terminology used in the

referenced literature.

The mean square value is particularly useful in dealing with near dis-

crete frequency, random amplitude components of F(t). For the well-behaved

periodic function, the discrete frequency components have constant peak amp-
litudes. For a near discrete frequency with random amplitude, it is not prac-

tical to determine all of the many Fourier coefficients required to define this

component. Instead, a narrow band filter is used to obtain these near discrete

components and the mean square value of the amplitude of each such frequency
is obtained.

The equivalent sinusoidal amplitude in terms of the Fourier coefficients

is given by the relation

1 2 =
A_ = _c n mean square value of a true sinusoid with

amplitude equal to c .
n

The total average power P for all of the near discrete components
avg

is equal to the arithmetic sum of the power AP(c# n) of each component.

Pavg = _ AP(CUn) = _ _ " (299)
n n

The graph ( Fig. 96) of the mean square value of the individual fre-

quency components is similar to that of Figure 94 where the Fourier amplitude
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Figure 96. Bar graph of the mean square amplitudes of

discrete frequency components.

coefficients are displayed for each sinusoidal component of F(t). Just as

did these Fourier coefficients, the mean square value of each frequency com-
ponent, and hence the power in each component, decreases to zero when the

number of frequencies contained in F(t) increases to a continuous band of

frequencies. This assumes, of course, that no finite amplitude discrete

frequencies are present. To eliminate this difficulty, it is usual to consider

the mean square value over a finite frequency range of continuous frequency

components, and to divide this quantity by the frequency band. In the limit,

as the frequency band decreases to zero, this ratio becomes a mean square

density function with respect to frequency and is usually called the power

spectral density function GF(W ).

Mathematically expressed:

GF(W ) = lira FZ(Aw_ lira Pavg(Am)A_--O A_ = A_--o Aw (3o0)
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where

F2(a ) =

Pavg (Aw)

mean square amplitude over all frequencies in A

= total average power over all frequencies in Aw.

The total average power contained in all frequency components in F (t)

is therefore given oy the equation

CO

= F' = f OF(O )
Pavg 0

(301)

The physical interpretation of the mean square statistical average of F(t) is
now evident in terms of the definition of power presented above.

The power spectral density function GF(C0J is also related to the

autocorrelation function RF(_'), as shown in the previous expressions for the

statistical averages. For a stationary and ergodic process, reciprocal
relations exist in terms of the Fourier transform. These convenient mathe-

matical relations are as follows:

CO

1 2 f0 RF(r)GF(f ) = -- cos wl" drGF(C°) = 2_" _"

CO

RF(.r ) = f GF(0j ) cosw_" d:0 (302)
0

These relationships are not easilyexplained by physical arguments and are not

discussed further in this document.
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The stationars"autocorrelaiion function RF(1-) of a single time func-
tion F(_-) also has a special interpretation which is important in determining
responseof the structure. Basically, this function showsquantitatively the
agreementbetweenthe function F(t) at time t and at time t 4 I- [i.e.,
between the functions F(t) and F(t + v)]. When -r := 0, the two functions are

in perfect agreement at every, point and the correlation between the two is as

large as possible. Thus,

RF(O) => IRF(_') I •

It is to be noted that RF(0) is equal to the mean square value _ of

F(t). A non-negative correlation coefficient, CF(_" ), is a convenient measure

of the relative correlation of F(t) with itself. This coefficient is defined

here as follows:

RF(I")

CF(T) -- fiF (0) (303)

Thus, CF(T ) may have any values between 0 and 1. CF(r ) = 1 indicates

perfect correlation, CF(_" ) = 0 indicates no correlation, and values of CF(T )

between 0 and 1 indicate partial correlation.

The validity of this concept of correlation is easily shown by considering
a simple sine wave of the form

F(t) = C sin (wt- _) .

The non-negative correlation coefficient CF(-r ) for this case is

344



C 2

_Y

C 2

T

f
-T

-T

sin (_ct + 0) sin (09t + cuT-t 9) dt

sin 2 (cot+ ¢) dt

1 2
C cos wt

,)
= I cos09TI (304)

A plot of CF(T ) is presented in Figure 97, and it will be valuable to

compare this ideal coefficient with those obtained in practice for random

functions.

1

/

//

/
/

0

2"-_ 2"-_ 2_

Figure 97. The correlation function CF(r ) of a sinusoid is the

absolute value of a cosinusoid CF (r) : lcos 09 v l"

In contrast to a well-behaved periodic function, the correlation coeffi-

cient for random white noise is zero for all r ¢ 0. "White" noise is a descrip-

tive term for a random process whose power spectral density function is a

constant over all frequencies.

F. Digital Vibration Analysis

The process of digitizing consists of converting continuous data into

discrete numbers. There are two main parts involved in a digitization pro-
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cedure. The first part is sampling, which is defining the points at which the
data is observed. It is important to have a sufficient number of samples to

describe properly the significant information in high frequencies. On the other

hand, sampling at points which are too close together will yield correlated and

highly redundant data, and increase greatly both the la}x_r and cost of calcu-

lations. To cut down the number of samples, one should decrease the sampling

rate to the lowest rate which will avoid aliasing errors.

To be specific on aliasing, if the time interval between samples is h

seconds, then the sampling rate is (]/h) samples per second. The useful

data will be from 0 to (1/2 h) Hz since frequencies in the data which are

higher than (1/2h) Hz will be folded into the lower frequency range from

0 to (1/2h) Hz and confused with data in this lower range. The frequency

1
f = -- (305)
c 2h

is known as the Nyquist frequency. Folding of the frequency axis is illustrated

on Figure 98. For example, if f _ 100 Hz, then data at 170, 230, 370, and
c

430 Hz would not be distinguish.3d from data at 30 Hz.

The second part in a digitizing procedure is the matter of quantization,

which is the actual conversion of the observed values to numerical form. No

matter how fine the scale, a choice between two consecutive values is required.

This matter is illustrated on Figure 99. In this figure one would choose

(a _ 1) as the closest numerical value to the desired time value.

I I I I I I l

0 fc 2fc 3fc 4fc 5fc 6fc 7fc

ORIGINAL FREQUENCIES

fc 3fc 5fc 7fc

_ALIASED c 4fc 6fc

FREQUENCIES ALIASED FREQUENCIES

Figure 98. Illustration of folding about the nyquist

cutoff frequency f .
C
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ACTUAL DATA_

SCALE UNITS

a+2

a+l

SAMPLING TIME
, TIME

Figure 99. Illustration of quantization error.

If one assumes that the quantization errors follow a uniform probability

distribution over one scale unit, then these errors will have a mean value of

zero and a standard deviation (rms value) of approximately 0.3 scale unit.

This can be considered as an rms noise error on desired signal measurements.

For example if the rms value of a signal is quantizated at 300 scale units,

then since the rms value of the noise is 0.3 scale unit, one would have an

rms noise-to-signal ratio here of 0. 001.

, BASIC STATISTICAL ANALYSIS

a. Data valuesu, are found at pointsi : 1,2,...,N.
l

are a dist,-mce h apart and determine the cutoff frequency f
c

These points

- ( 1/2h).

b. Mean value

o

u

N
1V

: N 1£z1 u"1
(306)

where

N : number of data samples

u = data values at points i - 1, 2,3,..., N.
i
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The true mean value is denoted usually by iz. The quantity u is called the sample
mean value and is an estimate of #. So that subsequent formulas and calcula-

tions may be simplified, it is convenient to transform the data to have a zero

mean value. That is, define quantities x. by the relation
1

x. -- u.-u , i -- 1,2,...,N . (3o7)
I 1

This computation would be necessary later for other procedures and is most

optimally performed at thistime.

c. Standard deviation

where

(xi)s -- (3os)
1 N-1

N = number of data samples

xi= transformed data values at points i = 1,2,3,..., N.

The quantity s is called the sample standard deviation. The sample variance is

denoted by s 2. The true standard deviation is denoted usually by a, and the true

variance is denoted by 02 .

d. Standardization. A further transformation on the data may be con-

venient at thistime ifthe computer calculated are to be performed with fixed,

as opposed to floating,arithmetic. Multiplying the transformed values, xi,
by 1/s yields

1

Yi - s x.l ' i = 1,2,...,N . (309)

This results in final data with a sample mean of zero and a sample standard
deviation of unity.

The scaling problem is eased in fixed point arithmetic since the data

may now be considered to lie in the range Yi -< 7. Actually the probability

of values greater than three or four in absolute value is negligible in most
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cases. If floating point arithmetic is used, there is no particular advantage

to having the division by s. It must be noted that the division by s corresponds

to a scale change so that output data for plotting and the like would have to be

later scaled appropriately. Also, for large amounts of data, the complete

standardizing is costly computational timewise since N divisions are required

if there are N data points.

e. Skewness coefficient (Cs)

N (_i)3
Cs = 2 Ns (3:0 

i=l

where

s = sample standard deviation

N = number of data samples

x. = transformed data values u. - u.
L 1

The true skewness coefficient for a normal distribution is zero.

f. Kurtosis coefficient (Ck)

(xi)'
Ck= 2 Nsr

i=l

(3::)

where

s = sample standard deviation

N = number of data samples

x. -- transformed data values u. - u.
1 l

The true kurtosis coefficient for a normal distribution is 3.0.
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g. Probability density function

f(x)- d F(X) (31Z)
cLx

where

f(x) = probabilitydensity function

F (x) = probabilitydistributionfunction.

The number of observations and the percentage of data in each of k class

intervals are tabulated. To later optimally apply a Xz goodness-of-fit test of

the data to the Gaussian and Rayleigh distributions, the number of class inter-
vals should be chosen as indicated in Table 11.

TABLE 11. OPTIMUM NUMBERED CLASS INTERVALS k

AS A FUNCTION OF THE SAMPLE SIZE N.

N 0-299 300-499

k 16 20

500-699

24

700-899 900-1249 1250-1749 1750-_

27 30 35 39

h. Probabilitydistributionfunction

0

,(x) = f ,(x) d_ (313)

where

f(x) = probabilitydensity function

F(x) = probabilitydistributionfunction

F(-_)= 0;F(_)= 1.0.

The cumulative number of observations and the cumulative percentage of data
in each class interval are tabulated.

i. Gaussian (normal) probabilitydensity function

[7-x 21
#(x)= exp I _-"_'2_'| (314)

L_v A
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where

Thus,

the true mean value is zero

= true standard deviation (estimated by s, the sample standard

deviation)•

x2 1_ (x) _- _._L_I e×p (s15)

The density function q) (x) is evaluated at the midpoints of the k class intervals

determined in 7 above.

j. Gaussian probability distribution function

X

(x)-- f o(x) dx (316)

where

(x) = Gaussian probability density function

4_ (x) = Gaussian probability distribution function.

The Gaussian distribution function should be evaluated at the k-1 class interval

end points.

k.

where

Rayleigh probability density function

x E_x,]c(x) = 7_ exp _ (317)

(r = true standard deviation (estimated by s, the sample standard

deviation).

Thus,
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x ix2]c(x) _ s-"f exp _ (318)

The density function c (x) is evaluated at the midpoints of the k class intervals.

1. Rayleigh probability distribution function

X

C(x) = f c(x) dx (319)
--0D

where

c(x) = Rayleigh probability density function

C (x) = Rayleigh probability distribution function.

The distribution function C(x) is evaluated at the k - 1 class interval end
points.

m. Tests for normality

(1) ×2 Goodnes_,-of-fit test

Let Pi be the percentage of observations in the ith class

interval. These values are obtained when the density func-
tion histogram is tabulated in Step g. Let A A. be the area

1

under the Gaussian density function curve in the ith class

interval. Note that these quantities are effectively obtained

during Steps i and j. The statistic

2
k Pi

X2= N E AA-----'_. (320)
i=l I

is distributed as _2 with k - 3 degrees of freedom (df).

(2) Moment test

The skewness and kurtosis coefficients Cs and C k given by

equations (310) and (311) may be used as an additional test
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for normality. The sampling distributions for C ands Ck-_

are tabulated for the . 01 and . 05 levels of significance in

Reference 27, where they are denoted by 71 and Yz,
respectively.

n. Test for Rayleigh distribution

The procedure is identical to that outlined in m (1) above except

that the AA. values are obtained from Steps k and 1. Also, due to the fact that
,

only one parameter, namely s 2, is necessary to define the Rayleigh distri-

bution, the statistic computed from equation 14.92 will be distributed as ×2
with k- 2 dr.

2. FOURIER SERIES REPRESENTATION

If a sample record x(t) is periodic of period T, that is, x(t) = x(t + T)

for all t, and if one assumes f0 = (l/T) is the fundamental frequency, then

x(t) can be represented by the series

oo

x(t) = a°_- + _ (anCOS 2vnf0t +bnsin2_'nf0t ) (321)
n=l

where

T

fa =-- x(s) cos 27rnf 0 s ds (322)n T
0

T

b - 2 f x(s) cos 27rnf 0 s ds . (323)
n T

0

Assume x(t) of length T is sampled at an even number N equally spaced

points a distance h apart where h has been selected to produce a sufficiently

high frequency cutoff f = (1/2/,). Let
C

x -x(nh) ; n=i, 2, ..., N .
n

One may calculate the finite analog of a Fourier series which will pass

through the N data points [28]. For any point t in the interval (0, T), one
obtains
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N/2 2_rnt (_/2)-1x(t)=A0+ _ A cos -- + Bn T n
n=l n=l

At the particular points t = kh, k = 1, 2,..., N

N/2

Xk=Xkh =A0+_ Ancos
n=l

(3_/2)-1
2 nk +N

n=l

The coefficients A and B are given by
n n

2_nt
sin --

T
. (324)

27rnk
sin --_ . (32s)

N

ly,
k=l

N
2 _ 27rnk

x. COS
n N _ k N

k=l

N

AN_2/=--1 \, !:TrN /_ x k cos
k=l

N
n=l, 2, ..., -- - 1

2

(326)

N
B = _ii_ 27rnk , N

xksin N , n=l, 2, ..., "-_- 1Nn

Note that A 0 = 0 when the sample mean x = 0 which is the situation here.

the above formulas,

N = number of data samples

x k= data values atk= 1, 2, ..., N

A = finite analog of Fourier cosine coefficient
n

B = finite analog of Fourier sine coefficient
n

h = time interval between samples

f = (1/2h) = cutoff frequency
c

T = period

f0 = (l/T) = fundamental frequency .

In
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One should note that for large N the computational requirements for determ-

ining the coefficients A and B become quite overwhelming. However, the
n n

determination of the coefficients might still be of enough interest to justify

the necessary computations.

a. Choice of Sample Size N

Certain formulas presented in Reference 20 can aid in the selec-

tion of the optimum sample size N to minimize later data processing. For

example, assume that a set of power spectrum measurements (Gx(f)} at a

particular value of f follows a normal (Gaussian) distribution. Let Gx(f ) be
the true value and let A p be defined such that

Prob
Gx(f ) - Gx(f )

Gx(f)
< Ap >p. (327)

It can be shown that under certain conditions

O/

P (328)

where a is the p percent value for a normal distribution defined by
P

Prob (-_p <x <- _p)=p • (329)

In equation (329), x is a normally distributed random variable with zero mean

and unit standard deviation. The quantity T in equation (328) is the total time

period over which the data is taken, and B is the resolution bandwidth.

To illustrate how the sample size N is related to the BT product which

these samples represent, an example will be calculated. Suppose that the

error of the power spectral density estimate at non-zero frequencies is to be

no more than Ap = 30 percent at an 80-percent confidence level (a,p = 1.3);

that is, in a sequence of repeated expemments, at least 80 percent of the

estimates will have an error no larger than 30 percent. The BT product is

then determined as

2

BT = _ 18.7
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Assumenow that frequencies up to f = 2000 Hz are of interest and a resolution
c

bandwidth B = 10 Hz has been chosen. The maximum lag number m is then

calculated from the equation

2f
o 2/2000)m- - -- 400.

B 10

Also, the time interval h between samples is given by

h

1 1

2f 2(2000)
C

- .00025 sec.

The total record time is

2

ecT = "_ 10

One then calculates the total number of observations N to be collected from

the equation

N- T _ 1.87 - 7.480x103 = 7480 .
h 0. 00025

This number is applicable to nonzero frequencies. For Gx(0 ), one requires

twice as many observations to maintain the same error risks.

Further experimental design considerations, such as the determination

of the resolution bandwidth B, are discussed in Section VIII and in Reference

20.

3. AUTOC ORRELATION FUNCTION

For a sampled data {Un}, n = 1, 2, ..., N, from a record x(t) which

is stationary, the estimated autocorrelation function at the points t = rh, r = 0,

1, 2, ..., m < N, will be defined using the transfo'rmed data values u - iI by
the formula n
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1
R --R (rh)-
r x N-r

N-r N-r

2 (oo+ 2 XnXo÷ 
n=1 n= i

N-F

N-r n n+r
1

if N > > r (330)

where

u = u(nh) = data values at n = 1, 2, ..., Nn

= sample mean value

r=lagnumber=0, 1, 2, ..., m<N

m = maximum lag number

x = u - _ = transformed data values.
n n

Note that the mean value _ = O.

The maximum lag number m determines the later frequency bandwidth

f resolution for the power spectral density function in the frequency interval

(0, f). This resolution bandwidth is given by

2f

B - c • (331)
m

The resolution bandwidth B is twice the range found by dividing the frequency

interval (0, fc) into m equally spaced parts (f/m) apart. Thus from know-

ledge of fc' one can chose m in advance so as to have a desired B. For small

statistical uncertainty in later estimates of the power spectral density function,
one should choose m < < N since the maximum number of statistical degrees

of freedom associated with these estimates is given by (2N/m). On the other

hand, high resolution (i.e, small B) will result if m is large. Thus a com-

promise choice for m is necessary in practice.

The autoeorrelation function may take on negative as well as positive
values. A normalized value for the autocorrelation function is obtained by

dividing R by R 0 where
r

N

1 (332)a0= ax(0)= -ff (Xn)2 •
n=l
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Note that the quantity R 0 is a sample estimate of the true mean square value

in the data. The quantity R 0 is related to the (unbiased) sample variance s 2

by the relation

N - 1 s t . (333)R° = N

Thus for large N, there is negligible difference between R 0 and s 2.

When R is normalized, one obtains the quantity (Rr/R0) which willr

be between plus and minus one; thatis

-z< (R/R) < I.
= r 0 =

o POWER SPECTRAL DENSITY FUNCTION

For sampled data from a record x(t) which is stationary with x = 0,

(i.e., as occurs for transformed data values x = u - _i),a "raw" estimate
n n

of its realizable one-sided power spectral density function G(f) ;that is, G(f)

is non-zero only for f_->0, is ffivenfor an arbitrary f in the range 0 <=f -<f

by c

m-1

(_rf / (_mf /Gx(f ) =2h R 0+2 _ R cos +R cos (334)
r=l r \_c/ m - fc-

where

h = time interval between samples

R = value of autocorrelation function at lag r using the transformedr
data values x = u -

n n

m = maximum lag number

f = (1/2h) = cutoff frequency.
C

The total mean square value in the record in the frequency range 0 _-<f -<_f
is given by c

f
C

f _x(f)d_=R0-=Rx(0)
0

(335)
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This quantity Gx(f ) shouldnot be confusedwith a nonrealizable two-sided

power spectral density function Sx(f) which is defined for negative as well as
positive f by

G (f)
xs×(f) = Sx(-f)- 2

Here

f
C

f
-f

C

S (f)df = Rx(0 )X

The values of the function G(f) should be calculated ollly at the (m + 1)

special frequencies

kf
f e= -- ; k= 0, 1, 2, ..., m. (33b)

m

This will provide (m/2) independent spectral estimates since spectral estimates

at points less than (2f/m) apart will be correlated. At these special frequency

points,

G k=G x = 2h R 0+ 2 R rcos \l--7"al + (-1 R r
r=l

(339)

The index k is called the harmonic number (k =_0, 1, -,9 ..., m), and the

quantity G k is the "raw" estimate of the power spectral do_lsity function at the

fre_lency f = (kfc/m). The quantities G k will be non-negative for all k.

A convenient check formula is

m-1 ]Rx(0). . _ 1 1 1. 2hm _ GO + _-; Gk + 2 Gm (340)
k=l
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A "refined" estimate of the power spectral density may be found by
further frequency smoothing called "Hanning [ 29 ]". Let G represent this

"refined" estimate. Then at the (m+l) frequencies f = (ldk/m) ; k / 0, 1,
2, . .., m, one obtains

Go = 0.5 Go+ 0.5 Gi

Gk = 0.25 Gk_ 1 +0.5 G k + 0.25 Gk+l; k= 1, 2, ..., m-I

= 0.5G +0.5G (341)Gm m-1 m

Other "refined" estimates may be obtained which are more complicated than

the above. These provide different bias and uncer_inty errors which are pre-

ferred for certain applications. These values for G k should be used as the

final estimates here for G(f) at the frequencies f = (kfc/m) ; k = 0, l, 2 ..... m.

5. JOINT STATISTICAL ANALYSIS OF TWO RECORDS

In the followingformulas the assumtion willbe thattwo records x(t)

and y(t) are stationary and exist only for 0 -<t -<T. Choose a sampling time

intervalA t = h time units apart, which in so doing induces a desired corres-

ponding frequency cutofff = (I/2h). Let the respective sample values for
c

x(t) and y(t) be denoted by

Un = u(nh) I n = I, 2, 3,..., N

Vn = v(nh} _ T = Nh
(342)

The first quantities to compute are the sample mean values

N N

- ly - 1 ZU = _ U V = -- V
N n N n

n=i n=l
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Choose a maximum lag number m which will give a desired frequency

resolution B = (2f /m) = (1/hm) as well as a desired number of degrees ofc

freedom (2N/m). The autocorrelatien functions and power spectral density

functions are calculated for x and y in terms of the transformed data separately

according to the formulas listed previously. Formulas to calculate their joint

cross-correlation functions and cross-power spectral functions in terms of

the transformed data will now be given where the transformed data are defined

as before by

x i=u. -uandYi =v" -v; i= i, 2, 3, ...,N.I I

e CROSS-CORRELATION FUNCTIONS

N-F

R (rh) - 1
xy N-r _, (Xn) (Yn+r)

n=l

N-F

Ryx(rh) = NI- r n_=1 (Yn)(Xn+r)
(343)

where

r = 0, 1, 2, .... m and m = maximum lag number.

Note that the two cross-correlation functions R
xy

change of the x and Yn sample values.n

and R
yx

differ by the inter-

The cross-correlation functions R_v(rh)..j and Ryx(rh) may be normal-

ized to have values between plus and minus one by dividing them by _(O)

(0). This defines a cross-correlation coefficient
Y
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Fxy(rh)

Rxy (rh)
= (344)

JR (o) 4-g (o)
x y

such that-1 N F (rh) =<1.
xy

For later determination of the cross-power spectral density function

between x and y, calculate the two quantities

1

Axy (rh) = _ [Rxy(rh ) + Ryx(rh)]

1

Bxy(rh) = _ [Rxy(rh ) - Ryx(rh)] (345)

7. CROSS-POWER SPECTRAL DENSITY FUNCTION

The cross-power spectral density function is a complex-values

quantity defined by

Gxy(f) = Cxy(f) - JQxy(f) ;j = %f-i (346)

where Cxy(f) is called the cospectral dens,ty function and Qxy(f) is called the

quadrature spectral density function. An equivalent respresentation for G
xy

(f) is

JOxy (f)
G (f) = IG (f)[ e (347)

xy XV

where ] G (f) [ is the absolute value of G (f) and 0 (f) is the phase angle
xy xy xy

contained in G (f).
xy
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Other identitiesare

IG_y(f)12=C2_y(f)+Qxy2(0

C (f)= IG (f)Icose (f)= c (f)
xy xy xy yx

Q_y(f)= - IG (f)I sine (f)= -Qy×(f)xy xy

exy (f) = - tan-i [Qxy (f)/Cxy (f)]

(348)

Raw estimates from sampled data for the cospectral density function

and the "quadrature" spectral density function may be found as follows. For-

mulas are for realizable one-sided spectra which are non-zero only for f>- 0.

At an arbitrary value of f in the range 0 -< f _-<f raw estimates are
C

C (f) = 2h Axy (0) + 2 _ A (rh) cos rrf
xy xyr=l

Iv (r)Qxy (f) = 2h 2 Bxy (rh) sin _rf
r=l

(349a)

(349b)

These functions should be calculated only at the (m + i) special frequencies

kf
C

f =
m

; k = O, 1, 2, ..., m.
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At these frequencies, one obtains

C k = C (kfc/m) =xy E m-1
r=l

÷ (-1) k A (mh) I

(rh) cos [ _'_" _A
xy \m/

(350)

Qk = Qxy (kfc/m) = 4h _ Bxy (rh) sin r._._ . (351)
r=l

Refined estimates of both C. (f) and Qxv(f) may now be calculated as
vv tv xy

before by using the Hanning method [ 30 ]. This yields

= 0.5C o + 0.5c t

= 0.5Q0 + 0.5Q 1

_k = 0.25 Ck_ 1 + 0.5C k

k = 1, 2, ..., m-1

+ 0.25 Ck+ 1

Qk = 0.25Qk_l + 0.5Qk ÷ 0.25Qk+l

= 0.5 + 0.5 C
m Cm-1 m

Qm = °'5Qm-1 + 0"5Qm

(352)

Now, since Gxy (f) = Cxy (f) - JQxv (f)' at the special frequencies f = (kf/m) ;
k = 0, 1, 2,..., m, one obtains the i'efined estimates

xy (f) = _xy (kf/m) = _k - JQk = 1Gx.y (f) I eje xy (f)

xy

(f) = -tan-' (Qk/_k)xy
(353)
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N

These values for [Gxyl and exy should be used as the final estimates here

for IGxyl and ex.y at the frequencies f = (_c/m); corresponding to the har-
monic numbers k-= 0, 1, 2, ..., m.

8. TRANSFER FUNCTION PROPERTIES FOR LINEAR SYSTEMS

Assume row that x(t) is the input to a linear system, characterized by

its frequency response function HCf), and y(t) is the output from this linear

system. The frequency response function H(f) is a complex-values function
defined by

¢0

H(f) = I h(T)e -j2_'fv dv (354)
0

where h(T ) = 0 for T < 0 is called the weighting function or unit impulse

response function of the system. An equivalent representation for H(f) is

H(f) = [H(f)le j@(f) (355)

where ]H(f)l indicates the gain factor of the system at frequency f, and O(f)

indicates the corresponding phase shift at frequency f.

A basic result between stationary input power spectra G x (f), linear
systems HCf), and stationary output power spectra G (f) is

Y

G (f)= IH(f) I2G (f) • (356)
y x

Another basic result using the stationary cross-power spectra G (f) is
given by xy

G (f) = H(i) Gx (f)xy
(357)

This latter equation reduces to two relations by equating real and imaginary

parts, namely,
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iG (f) i = iH(f) i Gx(f)
xy

e (f)-- _(f)
xy

(358)

One can derive also the relation

Gxy (f) _ eJ2_ (f)
G (f)

yx

(359)

from which to determine the phase factor _ (f).

At the special frequencies f = (kfc/m); k= 0, 1, 2, ..., m, the gain

factor and the phase shift are estimated by

2 + _2_1/
]Gxy (f) t (_k -_k'

[Hk[ = =

Gk Gk

9k = -tan-1 (Qk/_k) (360)

9. COHERENCE FUNCTION

A coherence function y_y (f) is defined between the stationary records

x(t) and y(t) by the relation

= , 0, , 0 (361)
XG x (f) Gy (f) ; G (f) Gy (f)
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where

G (f)--
X

G (f)--
y

G (f) =
xy

power spectral density function of x(t) at frequency f

power spectral density function y(t) at frequency f

cross-power spectral density function between x(t) and

y(t) at frequency f.

The coherence function satisfies the inequality 0 -<7_y (f) -_ 1 for all f.
It is unity when x(t) and y(t) are linearly related, and it is zero when x(t) and
y(t) are incoherent at a frequency f.

At the special frequencies f= (kfc/m);k= 0, 1, 2, ..., m, the
coherence function is estimated by

_2 N2
k +Qk

N 2 = . • (362)

7k Gk, x k,y

I0. JOh-NT AND CONDITIONAL PROBABILITY DISTRIBUTIONS

As an adjunct to calculationsof interestfor two random records, such

as the cross-correlation function and the cross-power spectral density function,

one may also calculatejointand conditionalprobabilitydensity functions.

a. Joint Probability Density Function

The joint probability density function

f(×,y)= y

where

f (x,y) = joint density function

F (x,y) = joint distribution function.
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This may be obtained in the form of a two dimensional histogram. That is,

each variable is divided into an appropriate number of class intervals and the

number of observations and the percentage of data in each rectangle is

recorded. See Figure 100 for an illustration as to how such a tabulation might

appear.

3

1

0

2 0

3 2

1 2 7 15 19 13 6 2

3 4 8 18 25 16 8 4

3 6 14 17 16 6 3

5 6 8 5 5 1

3

2

1

0

1

1

2

1

0
i

0

Figure 100.

ho

where

Two-dimensional histogram representing f(x, y).

in each square represents observed frequency. )

Joint Probability Distribution Function

The joint probability distribution function

x y

F(x,y) = f f f(u,v) dvdu
_¢D _CO

f(x,y) = joint density function

F(x,y) = joint distribution function

(Number

(364)

F(=, x,)= F(xl,-_)= 0; F(=, =)= 1
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The distribution function is tabulated by first accumulating the number of

observations and percentages in the x direction and then in the y direction

for the final cumulative rectangle entries.

C. Joint Gaussian Distribution

Let P denote the normalized covariance matrix for the variables x and

y; that is,

1 -r C0)
xy

-ryx(0) 1

Rxx(0) -Rxy(0)

4 Rx(O) _{Rx(0) _fRx(0)

-Ryx (0) Ryy (o)

_R (0) _ (0) _fR (0)
y x y y

(365)

Note that F (0) = r (0) and is termed the correlation coefficient of x and y.
xy yx

Let x be a vector defined by

X ---- ' S

Y

and let

x' = transpose of x.

The two dimensional (sample) normal density function is then given by
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{-1 }exp 2 1P'---'[-x Px'
f (x7 = (3667

I l

where

IP] = det P = 1 - F 2 (07. (367)
xy

The quadratic form xPx' replaces the squared exponent x 2 in the one dimensio-

nal case. The two dimensional (joint) Gaussian distribution is therefore a

function of five parameters = 0, _ = 0, Sx, Sy, and Fxy(07. All these quan-

tities are available from previous calculations, the means being zero, of

course, because of the previously applied transformation x = u - _, etc. The

bivariate normal distribution is most easily described in terms of "equi-

probability ellipses". If one considers the points that give a constant value

to the density function, it is seen that they form an ellipse

2,PIxPx'-- [ ]2 (i- r 2 (07
xy

+ = C 2

- )
(368)

where c 2 is a constant.

outside the ellipse is

It can be shown that the mass in the whole plane

-C 2 -C 2

2c e dc = e
C

(369)

Therefore, ellipses might be plotted for the 50, 75, 95, and 99 percent

values; that is, ellipses which include all but 50, 25, 5, and I percent of
the observations.
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The values for c2corresponding to these values are given in Table 12.

TABLE i2. VALUES OF c 2 FOR EQUIPROBABILITY ELLIPSES

Percent of Observations

Included in Ellipse

50

75

95

99

Corresponding Value
of c 2

0. 693

1. 386

2. 996

4.605

For a moderate positive value of F (0), the ellipses might take the
xy

form shown in Figure 101. If Fxy(0) = 0, they become circles and for

Fxy(0) = +l, a degenerate case of straight lines arises.

y

X

(x,y) - (0,0)

Figure 101. Typical equiprobability ellipses.
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The proper method of plotting would be from the parametric equations

of an ellipse. This requires several steps:

1. Eliminate the xy term in equation (368) of the ellipse by a

rotation of coordinates through the proper angle.

2. Calculate the semimajor axis a and semiminor axis b of the

ellipse.

3. Plot the values as a function of e from the parametric equations

X ---- a COS e

y= b sin e.

The details of obtaining the angle necessary to rotate out the xy term and for

computing the axes a and b may be found in standard texts on analytic geometry.

d. Conditional Probability Density

The conditional density function for y given x, f(y [ x ) (that is, for a
specific value of x) is

f(y]x) f(x, y)
- f(x) (370)

where

f(Y Ix )

f(x,y)

f(x)

= conditional density function of y given x

= joint density function of x and y

= density function of x(assumed _ 0 ) .

This is obtained by choosing a column of the two dimensional histogram for

the joint density function, and normalizing each entry by dividing by the total

number (or total percentage) in that column. That is, for each class interval

of x one may obtain a conditional density function.

To obtain conditional densities for x given y, one uses rows instead
of columns.
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11. SUMMARY OF FUNCTIONS FOR TWO RECORDS

The preceding work is summarized in Figures 102 and 103 which show

the order for computing desired functions for two records x(t) and y(t). In

the transfer function calculation, x(t) is considered as an input and y(t) as an

output through a linear system.

AUTO-
CORRELATION

FUNCTION

CROSS-
CORRELATION

FUNCTION

AUTO-
CORRELATION

FUNCTION

I I POWER

: SPECTRAL
Rx DENSITY

FUNCTION

I I CROSS'POWER
SPECTRAL

Rxy ' Ryxl DENSITYFUNCTION

J I POWER

SPECTRAL
> DENSITY

Ry FUNCTION

_I TRANSFER

I FUNCTIONxy,Gi COHERENCE

I.0x
Gy

Figure 102. Functions to be computed for two records.

x(t)

I PROBABILITY

DENSITY

; : (DISTRIBUTION)
FUNCTION

[x(t), y(t)l

PROBABI LITY
DENSITY

(DISTRIBUTION)
FUNCTION

f(x), F(x)

I JOINT PROBABILITY I

_I DENSITY I_
-I (DISTRIBUTION) |

I FUNCT,ON I

f(y), F(y)

L CONDITIONAL

PROBABILITY
> DENSITY

FUNCTION

f(x,y),F(x,y)

CONDITIONAL

PROBABI LITY
>- DENSITY

FUNCTION

f(y/x)

f(x/v)

Figure 103. Joint probability functions for two records.
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12. DIGITAL COMPUTER PROGRAM FLOW CHARTS

The flow charts on the following pages give the operations to be per-

formed by the digital computer program for the statistical analysis of vib-

ration data. The essential sequence of the operations should be approximately

as indicated if all of the preceding analysis is desired. Other routines can be

added to incorporate additional desired tests, such as tests for randomness

and stationarity. Also, if only certain parts of the program are requested,

such as power spectra alone, these can be computed directly by omitting

intervening steps dealing with other information.

13. COMPUTER TIME ESTIMATES

Table 13 gives some computing time estimates in terms of the number

of operations required. The load-store-indexing operations are grouped

together as are add and subtract. About a 30 percent factor to account for

programming overhead should be added into final estimates. This is to allow
for the necessary branching, control, etc., all of which is not accounted for.

Estimates for the construction of the probability densities and distributions

are not included because of their high dependence on the method of coding.

Input/output operations and setup time are not included and, of course,

these might be the preponderant factors when relatively small amounts of

data are involved. An example based on fixed-point IBM-7090 operation

times as indicated is included in the figure. This is given with and without
the Fourier series because of its effect in the overall times.

14. COMPUTATIONAL DE TAILS

Certain aspects of the programming involved for the vibration data

analysis are discussed in this section. Most items are concerned with mini-

mization of computation time. This might not be particularly significant

when relatively small amounts of data are involved since such things as input/

output time might overshadow the actual computation time. However, when

large amounts of input data exist, the computational time becomes quite

significant and proper attention to certain computational techniques can

result in considerably reduced program execution time with the resulting

economy of operation.

a. Fourier Coefficients and Sine Cosine Evaluation

An efficient recursive procedure for generating the coefficients of the

finite Fourier series is described in Chapter 24 of Reference 31. A portion
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POWER SPECTRAL

DENSITY FUNCTION

1
COMPUTE

SMOOTHED POWER

SPECTRAL DENSITY

1
,sT..ss_coNo"_
RECORD,OR_S

OINT ANALYSIS?J

f°
S IS JOINT hN O

_NALYSlSWANTEDy '

_Y_S

IS SECOND SET
OF INPUT

AVAI LABLE?

__YES

STORE RESULTS

FROM FIRST

SET OF DATA

WRITE SINGLE

RECORD ANALYSIS

OUTPUT

()
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CCtMPUTE CROSS-

CORRELATION

FUNCTIONS

l
COMPUTE

CORRELATION

COEFFICIENT
(r=0, NORMALIZED)

I COMPUTE Ax¥, Bxy

COEFFICIENTS

FOR USE IN CROSS-

POWER SPECTRA

1
DENSITY FUNCTION I

(SIN/COS AVAILABLE FROM I

PREVIOUS COMPUTATIONS]_

1

I COMPUTE QUAD-

SPECTRAL DENSITY

FUNCTION

SMOOTH

COSPECTRA

t

Ios,,,oo-,-,..,I
UAD-SPECTRAJ

COMPUTE ABSOLUTE

VALUES AND

ARGUMENTS
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COMPUTE TRANSFER

FUNCTION "GAIN"

FACTOR

(ABSOLUTE VALUE)

COMPUTE TRANSFER

FUNCTION

"PHASE SHIFT"

(ARGUMENT)

l
COMPUTE

COHERENCE

FUNCTION

COMPUTE JOINT
DENSITY FUNCTION -

NORMALIZED FREQUENCY

HISTOGRAM-PLOT COUNT

IN RECTANGLES

JOINT DISTRIBUTION

FUNCTION-ACCUMULATE

FIRST BY ROWS,

THEN BY COLUMNS

JOINT NORMAL
DENSITY FUNCTION-

COMPUTE EQUI-

PROBABI LITY ELLIPSES
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COMPUTE CONDITIONAL

PROBABILITY FUNCTIONS

• x GIVEN y -
NORMALIZED ROWS OF

JOINT DENSITY FUNCTION

COMPUTE CONDITIONAL

PROBABILITY FUNCTIONS

-y GIVEN x-

NORMALIZED COLUMNS OF

JOINT DENSITY FUNCTION

I
FORMAT ]

OUTPUT
FOR

PRINTER

1
OUTPUT

FOR
PRINTER

l
SCALE AND

FORMAT
OUTPUT

FOR PLOTTER

l

OUTPUT J
FOR

PLOTTER

I
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TABLE 13. TIME ESTIMATES FOR DIGITAL VIBRATION PROGRAM

L.o_, StOrQ, Add,

/_lox Subtract Multtl_y

Ope_w_oa 4.36 p • 4.36 f_ 24.86 _J

t.SOL. N

TransJbr to

Zoro Moan 2N N

Standard

Deviatloa 4 N N N

_Ownoss 4}4 N N

Ku1_oet8 4N N N

Pr_ebU*ty

DeuW7

pr_b_btl try

D_.r tbuttoo

Normat I_nstty

Ful3_tlon 41( k k

Normal

DiMribut_

x _ 4k k k-,.l

Dlmtributton Ilk 2k

Fourlor Serlos a 12+29 (N÷I) +14(N÷I) 2N 1+14(N_1)

44(N+I) 2N

Autocorrelat b0a

(m+l)(N - "_)Fm,,ct'..-

S/,m/Coemu m

Funct/oa m

Cr,o/.oo

Corrsistlon

Funct_

(re+l} (N - "_)4

2m m

3re(m÷1) re{m+1)

8(m - 1) 2(m-1)

Twioo AutoeOlTSlaUem

C1_018- powor

Spectra 4(m-t) (re+l) (re+l) (2m-t) (m-l) {re+i)

Smoo_mK re(m-l) 4(m-1}

Transit

FunctloQ 8(re+t) m+t 2(m+1)

coherence

Function 8(m+1) m÷l

Joint

probab" wy

N * tom1 nundmr of ob_mqu_iotm

m. mu.tmum I_ n_sb*r

k . msmber of chum Intorvals

For 8_ut_J t_ oM/_mtoe N = 1000

m • 200

k = 40

a. Estimates takem h'om Reference at.

Dtvtde e x sin/ tan -t

30.53 309 coe 360 t93

_S pl 287/_I _

k k

k

2k

a(m÷l)

m+l

Ssmplo To t`..

Sam_, Total wtmout

Fourier mrio8

m÷i

1

m÷|

SampLe T.UU.

In ms

4 391

1,3 080

243 04,3

242 850

242 850

18 44"/

3 4450

iT 388

221 927 823

21 947 600

38 444

"/23 5O4

8 (584

4"t 99@ 044

2 046 398

20 849

144 798

19 884

290 4578 78,e n_l

. 4. 848 rolls,

68 781 163 m8

= 1.tM mia.
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of this procedure may also be easily adapted for calculation of the coefficients

necessary in the Fourier transform to obtain the cross-power spectra from

the cross-correlation function. The procedure is now described with some

minor modifications from the way it appears in the above mentioned reference.

First consider for each n = 1, ..., (N/2) - 1, the numbers Ukn = Uk, n
defined recursively by

= U N =0UN + 2,n + i,n

2 7rn ,

Ukn = xk + (2cos --N--)Uk+l,n-Uk+2, n (371)

It can be shown that the Fourier coefficients are then given by

A 2 2_rn
n = _ (Ulncos_ -U2n)

2 27rn.

Bn = _ (Vlnsin-T-) . (372)

The term A 0 = 0, of course, and AN/2 is stilldefined as before by

N

= 1 k___1 Xk cos lot . (373)AN/2 N _

An essential part of the procedure makes necessary the computation of only

cos (2_/N) and sin (2_r/N). Subsequent values, cos (27m/N) and sin (27m/N),
may be generated recursively from the formulas,

cos (n+l) 27r 27r 27r sin 27r 2_r
-_= cos -_- cosn _- - _sinn-_
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2_ 2r 27r 27r
sin(n+1) _ = sin -N- cos n --_- + cos --_ sinn --_-

n = 1, 2, ..., N/2 . (374)

The angle range is from 0 to 7r, but the range 0 to _/4 suffices to define

all necessary function values. Therefore, for n > N/8, subsequent function

values may be obtained from such relations as

ff

sin (_ - e)= cose

cos (_ - e) = sin (9

sin (rT-O) = sinO

cos(_-e) = -cos (9
/

This further reduces the computing requirements from four multiplies and two

adds to either an interchange or changing sign or both of previously generated

values. The associated coding would become more involved however.

The computing procedure is finally very simply described.

27r 2_
(i) Set n= 1, compute sin-_- , cos _ .

(2) Compute Uln and U2n recursively as given by equation (371).

(3) Compute A and B from equations (372).
n n

2rr 2_

(4) Compute sin (n+l) _ , cos (n+1) _ by equations (374).

(5) Test n to see iffinished, ifnot increment n by one and return to (2).

(6) Evaluate AN/2 directly from its defining equation (373).
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The computationsmay be further speededby performing the summa-
tions of the values associatedwith the like sines or cosines in advance;that
is, consider the expression

2_ 2_(N-2)//2
(_ = xI cos_ + X(N_2)/2 cos N

27_

(×1 - X(N-2)/2) cos 7

s ince

27r(N-2)//2 NTr- 2_ 2tr 21r
cos N = cos N = cos (Tr = -_-) = -cos-_ •

The second version of the equation is evaluated faster since one multiply is

eliminated. Similar factoring may be performed for other parts of the

sequence. See Reference 32 f)r complete details. The program required to

implement this, of course, becomes fairly complicated.

The method of sine-cosine evaluation may be employed to advantage

in the cross-power spectra calculations. However, the remainder of the

procedure leads to less efficient computational methods because different

coefficients, A and B , arise in evaluating the cross-power spectra equa-
tions, xy xy

b. Correlation Function Computation

Depending upon the accuracy of the input data, itmay be worthwhile

to take advantage of the variable length multiply feature found on some digital

computers. A digital computer usually performs a multiply essentially by

shifting and adding. The variable length feature merely stops this process

prior to the time that a number of shifts equal to the word length of the machine

have been performed. For the IBM-7090, the maximum multiply time is

30. 52 ps = 14 machine cycles. The average time is given in the machine

reference manual as 11.6 cycles or 25.29/_s. This is because actual execu-

tion time is a function of sequences of zeros that occur in one of the factors.
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To illustrate the useof the variable multiply, assume it is knownthat
the input data consist of a maximum of 15binary digits (bits). A count C = 15
is therefore used in the multiply instruction. The maximum multiply time
wouldbe (C/3) + 3 = 8 cycles. If it is assumedthat a proportional amountof
the difference betweenthe maximum and average times is savedon the average,
the average time would be

15 (2.4) = 6.97 cycles = 15.19_sS--5_

Depending on the results of further programming analysis, a shift would pro-

bably be necessary to properly scale the data for subsequent summations. A

shift of less than 16 places requires 2 cycles = 4.36 _s, which would result

in an effective multiply time of 19.55 _s. This number is still significantly

less than the full multiply time when a tremendous number of multiplies are

necessary. This situation can, of course, occur in calculation a correlation

function based large amounts of data.

Further methods for auto and cross-correlation function evaluation are

described in Reference 32. These methods are based on the assumption that

data accuracy is relatively small (that is, say 10 bits as arises from typical

analog to digital conversion), and the amount of data is quite large. Then, by

initial scanning of the data, an optimum computing method may be determined

which amounts to factoring out common values in the cross products to save

multiplies. This programming becomes quite involved as a program-writing

program is necessary.

c. Power Spectral Density Computations

A small amount of computing time may be saved in the power spectral

density smoothing. One notes that the smoothing formulas require 0.5 Gi, and

0.25 Gi, where the Gi are the raw estimates. Therefore, one should omit the

factor of two which occurs in the formula for G i, thereby computing Gi/2

directly for later smoothing. This, of course, only saves shifting instructions

on a binary digital computer since shifting right or left is equivalent to mul-

tiplying or dividing by two, respectively.
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d. Probability Density Function Construction

The construction of the single variable density function requires that
the total interval of values on which the function is observed be divided into k

class intervals. After the number k is selected, one must establish the end

points of each of the intervals. Next, a count of the number of observations

lying in each of these intervals must be determined.

There are, of course, many ways of establishing the end points of the
k class intervals. One method would be as follows:

t*

o

Determine the sample range R = u - umax rain

CalculateAu = R/k .

3. Let the intervalsbe ( - _, Umi n ]

(Umin: Umi n + A u 3

(Umi n + _u, Umi n + 2_u 3

(u - AU,max

where the notation (x, y ] indicates the lower limit strictly greater than x, but

the upper limit less than or equal to y.

A second method is as follows:

1. Compute u and s
U

Q

6s
u

Compute --_ =Z_u
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That is, consider a six-standard deviation range of values.

3. Let the intervals be (-_, u - +

Au - 3Au 1- + -- u - 3s +(u 3su 2 ' u 2

(u + 3Su Au2 ' _ ]

In cases where the data are transformed to have a zero mean (that is,

x. = u. - u, Ax = Au, S = S ), the intervals simplify to:
1 1 X U

/_X
(-_, 3S +

X 2

A x 3Ax
(3s _- -- -3s "."

x 2 ' x 2

AX

(3s , .o
x 2

The factor A x/2 is included to keep the intervals centered at the ± 3s points.
x

The range 6s should not be used for sample sizes under about 1500. The
x

range should be decreased so that, assuming a normal distribution,

Prob x > Upper limit N > 2;

that is, there should be an expected frequency of at least two in the tail

intervals. This requirement is mainly for the X2 goodness-of-fit test.
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The actual counting of the number of observations per interval could be

done most easily if the data is sorted beforehand. Then the procedure be-

comes a matter of comparing the sequence of observed values against the

upper limit of an interval until a value exceeds the interval upper limit.

Counts could be established, for example, by storing index register contents

when the comparison fails, and then later computing differences. However,

whether or not a complete initial sort is worthwhile requires more analysis.

The two-dimensional density function is obtained in essentially

the same way except that two limits must be checked. This, of course,

greatly increases the computing time requirements.
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SECTION XIII. VIBRATION RESPONSE ANALYSIS

In this section, the basic analytic methods for determining the dynamic

response of structure are presented. These methods are the basic tools used

by vibration and acoustic engineers for structural analysis. Structural analy-

sis methodology is a vast subject encompassing a broad spectrum of mathe-

matical knowledge and its application to structural theory. To cover this much

material in one section of a single book would be impossible without a system-

atic policy of condensation. In this section condensation of material is consider-

able in areas where prior knowledge is assumed or when references are readily

available. Derivations are included when essential to understanding the
material.

More detailed descriptions will be presented on less familiar topics

such as superposition leading to the treatment of random inputs and the devel-

opment of the Duhamel integral (sometimes called the superposition integral

or the convolution integral), equivalent systems, transient-steady state rela-

tionship, orthogonality, matrix theory application, vector and tensor applica-

tions and an introduction to non-linear systems. Basic mathematical consider-
ations are included at the end of this section.

In most cases the presentation of material is addressed to the theoretical

analysis of structure for application to dynamic analysis. Applications involving

judgement considerations are included in Section XIV. The output of a theoreti-

cal analysis is usually in some form of response or transfer function. Appli-

cation of these functions is used in many vibration and acoustic problems such

as environment derivation, loads computation, natural frequency identification,

flight data validation, and test data interpretation. The latter application is

further divided into modal frequency tests, impedence tests (a special applica-

tion of equivalent systems) and qualification tests. Furthermore, the contents

of this section are limited to classical mechanics except for some areas such

as response of a panel to acoustic inputs where the theoretical result is modi-

fied by empirical test data.

A. Review of Fundamentals

A physical system experiences vibration when subjected to time-varying

external forces. Suppose a vibrating system has N particles where a particle
P

is defined as mass concentrated at a point and the rotational properties of

each point about its center are neglected. At any specific time, three coor-

dinates are required to define the position of each particle. If the system
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of particles is in a free-free condition, the system is said to have 3N degrees
P

of freedom where Np is equal to the number of particles. If any of the parti-
cles are restrained in any direction due to external constraints, then the de-

grees of freedom are less than 3Np by the number of constraints, Nk. The
degrees of freedom are defined then as the number of independent position

quantities required to define the location of any particle in the system at some

time. Therefore,

Degrees of Freedom = 3Np - N k .

I. CONSERVATIVE FORCE FIELDS

Webster [33] states: "If the forces depend on the velocities or on any-

thing besides the coordinates, the system is not conservative." Stated in an-

other way, the potential energy function is a function of the coordinates only;

that is,

V=V (x, y, z)

which leads to Webster's definiv. _,,equation for a conservative force.

8V 8V
= 8._.V.Vdx + -- dy dz

dV ax ay 87 " (375)

There are four methods for testing a force function to see if it is conservative.

If the force function possesses any one of the follo_ving, it is conservative:

a. It is the gradient of a scalar function.

b. The line integral of the tangential component around any regular
closed curve is zero.

Co The line integral of the tangential component along any curve wholly

in the defined domain of the force, extending from a point P to a

point Q is independent of the path.

d. The curl of the vector field F is 0; that is,

V X F = 0 . (376)
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The more rigorous definition given above is required in the analysis

of more complex systems such as found in fluid dynamics. In practical en-

gineering analysis of structure, a system without damping is conservatix,e.

2. NATURAL FREQUENCY AND RESONANCE

The natural frequency of _-ibration of a system is the frequency of a

free vibration. A system experiences free vibration if the x,ibration continues

after the forcing function is removed.

Resonance occurs when a system experiences an external drix'ing

force with a frequency that coincides with one of the natural frequencies of

the system or when the imaginary parts of the impedance x'ectors cancel.

3. HARMONICS

Assume a system has a number of possible x'ibration frequencies,

fl, f2, fs, ---, fn such that;

fo = 2fl,

f3 = 3fl,

fn = nfl

Then the fundamental frequency ft is called the first harmonic, f: i: the first

overtone or the second harmonic_ f_ is the second overtone or the third har-
monic, and the n th frequency is the n th harmonic or the _n-1)th ox_ertone.

4. SYS TE M LINEARITY

A vibratory system is said to be linear and time invariant if the equ_-

tions of motion describing the system take the form of linear differential

equations with constant coefficients. A system with a single degree of free-

dom can be described in terms of a single second-order differential equation.

A two-degree-of-freedom system can be described by a pair of coupled second-

order differential equations and a system of n degrees of freedom requires n
equations.
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A linear differential equation by definition is one that contains the

dependent variable and its derivatives to the first degree only. Using D to

represent the differential operator, d/dx, the general form of a linear differ-

ential equation can be written as

(ao Dn + aiD n-I + ...+ an-lD * an)Y = F (377)

If F = 0 then the equation is said to be homogeneous since each term is to the

first degree in y or one of its derivatives. For a vibratory system to be

linear, the coefficients must be constants.

All discussion in this section is addressed to linear systems except

for Paragraph G which presents an introduction to non-linear dynamics.

5. RANDOM REPRESENTATIONS

For a linear system superposition is rigorously applicable and be-

comes a powerful engineering tool. Churchill [34] gives the following theorem

on superposition. "Any linear combination of two solutions of a linear homo-

geneous differential equation is again a solution." A random vibration may be

considered to be a composite of an infinite number of sinusoidal vibrations.
Since a Fourier series contains an infinite number of sinusoids, each of which

is a singular solution to a different equation, a Fourier series can be used to
solve a random vibration problem using superposition. Eliminating the lower

frequency terms in a Fourier series and considering superposition of the re-

maining sinusoids, the solution for a random input follows. It will be shown
that the response of the system can be defined for sinusoidal input and applied

to the solution for a random input.

Exactly the same result is obtained when a truncated portion of a ran-

dom signal is considered. In this case the power spectral density is derived

for an infinite time interval through the Fourier transform and the solutions

are identical with the periodic series discussed above. A little subjective

reasoning verifies this conclusion. A periodic signal with the lower frequency

terms neglected and a truncated random signal of infinite length are one and

the same for representing random inputs in dynamic analyses. In the para-

graphs that follow, the root mean square/power spectral density relation is

developed for the periodic and non-periodic case.
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Theperiodic andnon-periodic random solutions are also related to the

transient solution, because if the response of a linear system is known for one

input it is known for every input. Proof is shown through the transfer function

defined as the ratio of the Laplace transformed output to the Laplace trans-
formed input. This is discussed in Paragraphs C.3 and H.2 of this section.

a. Periodic Functions

A random environment used for an analysis can be represented by a
periodic function if certain restrictions are observed. Since each term of a

Fourier series is periodic, the sum of these terms is also periodic. For

vibration analysis and data reduction the periodic character of the series can

be neglected provided the lower frequency terms in the series are edited out

of the analysis . In general, the error is reduced to negligible magnitude if

the first 20 frequencies are ignored. If the period under consideration is T

seconds, the first frequency is l/T Hz and the 20th frequency is 20/T Hz.

Suppose the lowest frequency of interest is 5 Hz; thus,

2O
m = 5 T = 4 seconds
T

If the lowest frequency of interest is 20 Hz, T can be 1 second.

In Reference 35 the development of this approach is covered in some

detail. When the Fourier series is equated to the Grms by squaring the

series, the following result is obtained

Grins Af

½

(378)

Grm s = acceleration root mean square

Zkf = frequency increment

an = coefficient of each term in the series

T = time interval

If Lkf---df the summation becomes an integral,
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Grm s =
I 1

f_ _.

f PSD df

fl
(379)

PSD = power spectral density, g2/Hz" Thus, the PSD is related to the Grm s

for any frequency increment. The superposition principle permits solutions

to random input problems by considering the combined effect of sinusoids.

An analog spectrum analyzer performs an analysis in electrical units using

the above equation. Conversion to g's follows from the calibration.

b. Non-Pe riodic Functions

Exactly the same conclusion is reached by considering a truncated

random signal and using an autocorrelation function.

Suppose a single sample of random data is of duration T. The tem-

poral average is obtained by averaging with respect to time along the sample.

The temporal mean square is given by

T

1 2E ]< f,.(t)> = DT f f2 (t) dt . (380)

-T
1l

2

Ifthe f(t) is defined for all time, then the above equation is evaluated by taking

the limit as T _ . For such a function, a temporal autoeorrelation function

is defined by

(T) = < f(t) f(t + T) >

T

2

=lim T f(t)f(t+ 7) dt

T -_ -T

2

(381)
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Whenf(t) is only defined for a finite interval, a similar expression exists.
The integral on the right side may be used without the limit as T--_ provided
f(t) is defined from t1 = T/2 to t2 = T/2 + T. Such a finite average would most

often be used for incremental values of _"which are small compared to T. The
function _ (0) is just the temporal mean square.

Consider a stationary random process as given below on the interval

from ti to t2.

f(t)

! !

! I
! I
I
tl t2

t

If Tma x is defined to be t2 - tt, an autocorrelation value

E [x(ti) x (t2)]= R(r) (382)

results in a function of v when all values of _"are considered. A frequency dis-

tribution of R( ) can be stated by a standard transformation using the foUowing
relation:

R(_') = foo S(oj)eiW _. do.) . (383)
--aO

The function S (w) has the form of the Fourier transform of R ().

i
S(w) =_ f_°R(T) e-i°Jv dT . (384)

395



S(¢_] is a non-negative even function of w (symmetric about the ordinate).

Suppose thatt2 -- tI which means T--0. Then R(T) = R(0).

R(r) = R(o) = 2 S(w) d w . (385)

O

R(o) is the mean square of the process for itisthe sum over allfrequencies

ofS(w) d_. Therefore, S(w) may be thought of as a mean square spectral

density. Changing from a circular frequency to a linear frequency gives

R(o) = E {iX(t)] z}

= f_¢ W(f) df (386)
O

where X(t) represents an acceleration process and W(f) has units of g2/Hz-

or power spectral density.

Looking at equation (381)

T

2
1

R(o) = lira _ f f2(t) dt (387)
T --_¢ -T

2

This last relationship shows that to obtain a true mean square spectral density,

f(t) is averaged over a long time; also AW -* o as T -* _o.

In problems of interest, the power spectral density is not integrated

over all positive velues of frequencies because usually a finite range of

frequencies is all that is important. Therefore, the equation is normally used

in the form given below:

T

1 f2
f W(f) df = lira _ f (t)

fl T-_ _ -_T
2

dt . (388)
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The term on the left is the square of the G value if W(f) is power spectralrms
density. This last statement is presentedbecausethe aboveequation is a
general relationship andW(f) could be a function other than power spectral

density. Rewriting the last equation in terms of G yields
rms

f2G = f W(f) df (389)

rms fl

This is the same result that was obtained in Equation (379). The digital
analysis of random data follows the developments in the foregoing paragraphs.

B. Equationof Motion - SteadyState

i. NEWTON'S LAW

Newton's second law of motion may be stated the following way:

The time rate of change of momentum is proportional to the resultant force

and is in the direction of that force. As a general rule for most vibration

problems the mass is constant and thereby

d
_Fx = m _ (V) = n_ . (390)

The quantity m_, a product of the mass and acceleration, is called the inertia

force. Equation (390) can also be stated as the summation of forces in the

x-direction minus the inertia force is zero. In this form, the equation repre-

sents d'Alembert's principle. The state of motion of mass at any instant may

be considered as a state of equilibrium, thereby reducing the problem to its

static equivalent.

This law of motion can be used to establish the equation of motion for

any degree-of-freedom vibrating system. However, for simple illustration

purposes the equation of motion for a one-degree-of-freedom system will be
derived.

Consider the viscous damped spring-mass system excited by a

harmonic force as shown in Figure i04. For an applied force and motion down-
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ward, the forces acting on the mass in the free-body sketch are shown in

Figure 104.

/////////. r//I///

FREE LENGTH
OF SPRING

ST_,TIC
DEFLECTION

t I'. I-T
$$T

+ X
$

K(SST * X) CX

11
!,,1"li

rng FoSlNWt

Figure 104. Gonerali_ed model: one-degree-of-freedom system.

Considering the motion in the x-direction, the equation of motion of

this system is

m_ = _ (Forces in x-Direction)

=mg + FoSinwt = k(SBT + x) - c_ . (391)

Before an excitation force is al_pLied to the mas_, the gravitational attraction

mg is equal to the static spring force kSST; therefore

m_ + ck + kx = F sin_t . (392)
O

The general solution of the above second order linear differential equation is

the sum of the complementary function X (t) and the particular integral

X (t) ; that is, c
P

X = X + X . {393)
c p
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DT
A solution X = A

C e
satisfies the corresponding homogeneous equation

m_ + cA - kx = 0 . (394)

Substituting D = dx/dt in the differential equation results in a simple quadratic
which will, in general, be satisfied by two values of D,

1 (_c + jc2 _ 4krn) (395)Dls 2 - 2m

and the complementary equation consists of a linear combination of two

solutions, namely,

X c = al eDit + a2 eD2t (396)

where a 1 and a 2 are arbitrary constants depending on the initial conditions.

The complementary solution of a damped vibrating system describes

free motion if the damping is low enough to make D 1 and D 2 complex numbers.
Critical damping is the value of "e" which separates the vibration and non-

vibrating system; that is, the radical of equation (395) will become zero.

Thus, the critical damping is expressed as

C = 2',]'--_ = 2mw . (397)
C n

Damping of a vibrating system is often specified in terms of the ratio of

damping to the critical damping, expressed as e/c where
C

C C
m

c _ " (398)
e

The ratio c/c c is more commonly referred to as the damping factor and is

given the symbol _.

The previous development describes a typical stable vibrating system

which occurs when the damping factor is positive. If the damping factor is

greater than one the values of D 1 and D 2 will be real, distinct and negative

because _2 _ 1 will be less than _. Thus, the complementary equation would
be
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-D2t
X = ale-DIt + a2e . (399)

C

No matter what the initial conditions are for this particular case there will

be no oscillatory motion. The motion, called aperiodic, will diminish exponen-

tially as time increases.

For the special case where _ = 1, both of the roots are negative and

are equal to -Wn, yielding the complementary equation

X = (a 1 + a2t)e-W tn (400)
C

which is again aperiodic and will diminish exponentially with time.

If the damping factor, _, is less than one, the roots D 1 and D 2 will

be complex conjugates of the form and a vibration exists

where j = _ At this point it is convenient to define the term Wn _f_ _ _2.

Since _ is a ratio of damping coefficients, the term COnJl - _2 defines the

frequency of oscillation, COd' This frequency is less than the undamped

natural frequency of the system.

The complementary equation for a stablevibration system (0 < _ < 1)

can be expressed in a simpler form by using the frequency of oscillationCOd
and Euler's formula

e _= i 0 = cos _ _- isin e

that is,

-_COnt {
X = e (A 1 cos wdt + A2sinwdtlC

(402)

or

X = Ae-_Wntsin(COd t + qS)
C

(403)
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where A1, A2, qb and A are arbitrary constants determined from the initial

conditions. These constants are related by A = _] A12 + A22 and _ = tan -1

Ai/A 2. The complementary equation for _ less than one describes harmonic

motion and will diminish exponentially with time.

Since all the cases discussed have exponential decay, the motion
described by the complementary equation is classified as transient motion

except when _ = 0, then the amplitude will not diminish as time increases.

To determine the particular integral and complete the general solution,

a method called "Method of Undetermined Coefficients for Finding Particular

Integrals" can be used. The following rule is found in Reference 36. If f(t)

is a function for which repeated differentiation yields only a finite number of

independent derivatives, then, in general, a particular integral X can be
P

found by assuming X to be an arbitrary linear combination of f (t) and all its

independent derivatives, substituting this expression into the differential

equation determining the arbitrary constants in X in such a way that the

resulting equation is identically satisfied.

Using the above rule a particular solution in the form

X = Acoswt + Bsinwt (4047

is substituted in the differential equation (392) yields

F

X = o sin (wt- 9)
P _/(a)c) 2 + (k - _2m)2

Fo/k

4 (2 r,w/ 2
n + [i- (cL)/C#n)2]2

sin - } (4O5)

The total solution is the stun of the complementary and particular solution.

In time the complementary solution vanishes and only the particular solution

remains for the steady state condition.

written
The radio X/X

O
is defined as the magnification factor K and is
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X 1

K = _--- N/ (2 _ r) z + (1 -r2) 2 (406)
O

where

r = the frequency ratio _/_
n

Xo = Fo/K- o

The phase angle equation is

= tan -1 2___rr . (407)

.. ".

From studying the particular integral, the following conclusions can
be made:

a. The frequency of the response is the same as the excitation

frequency and the motion is harmonic. Therefore, this motion is called

steady-state motion.

b. The particular integral does not contain arbitrary constants.

Thus, the steady-state response is independent of the initial conditions.

c. As can be seen by the solution of the particular equation, the

steady-state response amplitude is a function of the frequency and amplitude

of the excitation. The ratio X/X is the magnification factor K.
O

d. At resonance (_/w = 1) the damping factor _ alone limits the
n

amplitude of the system.

e. The response Xsin (wt - _ ) and the excitation F sinwt do not
O

reach maximum values simultaneously. At resonance the phase angle equals

90 degrees. The phase angle varies with excitation frequency because of the

presence of the damping factor.

Figures 105 and 106 illustrate in a linear form, plots of the

magnification factor K and the phase angle _ as a function of the frequency

ratio r for various amounts of damping.
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Frequently, this same information is presented in log-log form and

is commonly referred to as Bode plots. Figures 107 and 108 represent

examples of typical Bode plots.

Another useful plot for the same presentation is known as the Nyquist

plot, Figure 109. The length of the vector [X/X eC¢[ is the magnification
o

factor while the phase angle ¢ is the vector inclination with the real axis.

2. ENERGY EQUATIONS

Previously, a second order, nonhomogeneous, ordinary differential

equation of motion for a vibration system was derived and an algebraic solu-
tion was obtained. Another method to obtain the differential equation for the

undamped free vibration is through the concept of total energy [37].

With an undamped free vibration system there is no forcing function

and no energy dissipation due to viscous damping. Therefore, the systems
energy content will remain constant.

Conservation of energy requires that the sum of the potential and

kinetic energies be equal to a constant at all times for a conservative system.

The potential energy results from the strain energy of the spring neglecting

the mass of the spring and the kinetic energy is the energy resulting from
the velocity of the mass.

Consider the undamped free vibration spring-mass system as shown

in Figure 110. Assume that the mass m is displaced from the static

equilibrium position in the positive x direction and then released. The

system's potential energy changes due to the displacement. This change

is equal to the change in strain energy in the spring minus the potential

energy of the mass when there is a change in elevation. Therefore, the

potential energy is defined by the term U and is expressed as

X

U = f (Total Spring Force) dx - mgx . (408)
O

In Figure t10, g ving spring force versus spring deformation, the

potential energy is the cross-hatched area of the plot. The total spring force

is the sum of the static deflection plus the force due to displacement. Thus,
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by subtracting out the term mgx, the net potential energy in the spring is

obtained. The evaluation of the integral is

X

U = f (mg + kx)dx - mgx
0

(409)

Assuming that the mass of the spring is negligible when compared with the

block of mass m, the kinetic energy T is defined as

T = --1 mk 2 (410)
2

Recalling that the total energy of the system was constant, the time derivative

of the total energy is zero.

T + U = Constant

d [T +U] d[1 1 kx2]d-'t" = d_" 2" m_2 + 2" = 0 . (411)

Since the velocity cannot be equal to zero for all time, the solution follows

from the discussion in Paragraph 1. of this subsection.

3. LAGRANGE 'S EQUATIONS

The equations of motion for a complex vibrating system can be derived

by utilizing Newton's laws as developed in Paragraph 2. of this subsection.

A more powerful tool for this type of analysis is the Lagrangian method.

The object of Lagrange's equations of motion is to express the

equations in terms of generalized coordinates and generalized forces. The
transformation of Cartesian coordinates to a set of generalized coordinates

can be very involved. Also the forces used in Newton's laws are vector

quantities and are difficult to handle in complex systems. Thus, the

Lagrangian method permits the equations of motion to be derived using basic

energy expressions. Energy is a scalar quantity and can be expressed in
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any convenient set of coordinates. Lagrange's equations will be derived using

the concepts of virtual displacements and d'Alembertts principle as developed
in Reference 37.

It is necessary to set up a theory of generalized coordinates and

assuming that there are as many generalized coordinates as Cartesian coor o

dinates. Consider a dynamic system of p mass particles with n degrees of

freedom. Each particle m.1 will have the Cartesian coordinates xi, Yi' and

z i (i = 1, 2, .. . , p) and can be described by a set of generalized coordinates

(ql, q2, • .., q ) • The Cartesian coordinates can be expressed as functions
n

of the generalized coordinates. This reflects the general case in which

coordinate coupling exists, that is, the axes of the coordinate system are

nonorthogonal. Therefore, the Cartesian coordinates are related to the

generalized coordinates

x.1= x.1(ql,q2,...,qn)

Yi = Yi (ql, q2, ..., Cln)

z.1= z.1(ql, q_, .-., qn) • (413)

With a system of particles described by a set of generalized coor-

dinates, ql, q2, ..., an' the time derivative _1k of any coordinate qk will be

called the generalized velocity associated with this coordinate. The general-

ized velocity of the Cartesian coordinate x. is the corresponding component
1

x. of the velocity of the ith particle located by this coordinate Extending
1 °

the concept further the original velocity components xi' Yi' and _. of equationl

(413) can be expressed in terms of the generalized components and velocities

by differentiating equation (413).

_x. ax. 8x i _¢. dqn
_.k =_ =__k_ dq_ + d__.+...+
3t _ OqI dt aCl2 dt t)Cln dt

oyi oyi d%bYi _)Yi dqL + __ + ... +

Ot - Yi - 8(11 dt _c12 dt _qn dt
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8z. az. 8z. 8z. dqn
-- I dq2 + ... + 1i _._ I dql +__
8t I 8ql dt 8q2 dt 8qn dt

These three equations can be simplified to the following expressions:

n Ox.

j=

(414a)

n _i

=
j=i _ J

(414b)

n 8z.

_.= _ --£ _.
i j=l OClj j

(414c)

.th
Consider the i particle m. with its Cartesian coordinates x i, Yi and z.. If1 1

the components of the applied forces acting on the particle m. are X i, Yi'

and Z i, then the work done by these forces to move the particle a distance of

5xi, 5y i and 5z., is equal to the sum of the products of the component forces

and their 6 -displacements. Therefore, from the principle of virtual work,

the virtual work is

P

5W = _ (X.15x._ + Y.,Sy i + Z._Sz._) = 0 (4i5)
i=l

From Reference 37, d'A/embert's principle may be stated as such:

'rEvery state of motion may be considered at any instantas a state of equilib-

rium ifthe inertiaforces are taken intoconsideration." Utilizingthe concept

of dIAlembert's principle, equation (415) can be written as

P

6W = _ (X.15xi + Y'lSyi + Z.iSz.t )
i=l
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P

mi (xi 5x.=1 1
+ _}i 6Yi + "_'1 6z._ )

or

5W
P

= _ (X. 5x.
1 1

i=l
+ Y'I 5Yi + ZiSz.)l

P

= _ mi (xi6x" + _ 6y i + "_. 6z.) = 0=1 * i i i

(416}

It is necessary to analyze each of the terms in equation (416). The first is

expressed in terms of Cartesian coordinates and is the work done by the

components of the applied forces. To express this form in terms of general-

ized coordinates the infinitesimal variations, 6xi, 6Yi, and 6z.1 must be evaluated.

This is accomplished by realizing that

n _x.

1 j=l_ _)qj -j

n _i

5Yi = j=l_' 0qZ 5qj (417b)

n _z.

5z" = _4 -_j5q'l j= J , (417c)

Substituting these equations into the first term of equation (416) yields

: xi % ÷
i=i j= j=

+

n Oz. ]
z . _ ---.!-I"1 Oq. oqj

j=l j
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or

5W

n

-- 7,
j=l

Qj 5qj (418)

where Q. is,
3

p 0x. 0y i Oz.

= "= (X i 1 + Yi _qj + Z.1 1 ) (419)

The definition of Q. is called the generalized force corresponding to
3

the generalized coordinate qi" In order to express the second term of equa-

tion (416) in generalized coordinates, it is necessary to first introduce the

kinetic energy function T as

1 P

T = _ _ m i (_¢iz +_/i 2 + Zi 2) . (420)
i=l

Differentiating this equation with respect to xi' Yi' _'l and then with respect

to time and using these results in conjunction with equation (417), the second

term of equation (416) can be written as

_W

d 8zi 1
5q. . (421)

J

Equation (42t) can be simplified if the following relation is used for

x i and equivalent expressions for Yi and z._:

d (Yr _xi ) d 0(__ii)_xi 0T _ki
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or

(422)

Substitution of these expressions for xi, Yi and z.t into equation (421) results
in the following equation

6W =

j= "= 1 ] 1

f a..__T --_i + 0T _i aT azi)]

(423)

This equation can be simplified further by using the expressions for xi, Yi
and z. in equation (414) and also realizing that

1

_. a_. _i aYi a_. az.1 l I 1

(424)

Substitution of equation (424) into (423) will produce the following expression

for 5W:

5W
n p [ d ( _r _. -. O_zi a_i )= "_ a_. + _i + a_. _jj= i= 1 t

1 _r aT 6¢_a_. + +, % % _j

( 425)

From equation (420) the kinetic energy function in Cartesian coordi-

nates is a function of the velocities xi' Yi and _.. This expression for the1
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kinetic energy can be differentiated with respect to _ti and qi' and after

comparing the results of this operation with equation (425), it can be seen

that

_w= y, -a %j=l

(426)

Previously, an expression for 6W was derived as a function of a

generalized force Qj. This expression, equation (418), when equated with

equation (426) yields the following equations of motion commonly referred to

as Lagrange's equations.

0T (427)

At this point it is necessary to discuss the generalized force in

more detail. For a complex vibrating system the generalized force can

consist of three distinct forces:

a. An applied force that is applied externally to the system

b. A spring force because of a change in potential energy of the

system

c. A damping force which is due to the dissipation of energy in a

damper.

The potential energy of a system is a function of the generalized

coordinates as shown in the equation

1 n p

u = _ Z F_ % qi%
i=l j=l

and if this equation is differentiated with respect to qi
gives the generalized spring force

n

_ bU = _ _, kij q.
QJ = % i=l J

(428)

the following expression

(429)
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The dissipationfunction D can be analogous with the potentialenergy

function defined as

1 n p

D = _ _1 _ cijcti_tj . (430)
i= j=l

When this function is differentiated with respect to qj the generalized force
for the dissipation function is

n

8I:) = - V (431)

Now it can be seen that the generalized force for a complex vibrating

system is comprised of three distinct forces. Thus, Lagrange's equations of

motion can be expressed in a more general form and is given below

d aT 8T aD bU

dt _lj % + _ + % - Qj (432)

The subscripts j = 1, 2, ..., n are the number of generalized coordinates of

the system, and Qj is the applied force for each generalized coordinate.

Whenever the system is conservative and since the potential energy function

is a function only of the generalized coordinates, equation (432) Can be
written

d aL _L
- 0 (432a)

where L = T-U and is known as the Lagrangian operator.

• The primary advantage of Lagrange's equations is that the equations

represent a uniform way of writing the equations of motion of a system and

these equations are independent of the coordinate system used.

4. INFLUENCE COEFFICIENTS

In the preceding paragraphs, Newton's second law of motion and

energy relationships were used to derive the equations of motion for a
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vibrating structure. Another commonly used and very convenient approach

for systemswith many degrees of freedom is the method of influence coeffi-

cients. The equations of motion may be written in terms of influence coeffi-
cients and solved to obtain numerical values for natural frequencies and mode

shapes. This method is an application of the Lagrangian use of generalized

coordinates and is widely used for the analysis of complex structures.

The method of influence coefficients is based upon linearity. The

"inertia force" associated with the vibratory motion of each element of mass

causes a certain motion at all other mass elements in the system. Then

the deflection at each mass element is the sum of the effects from all the

inertia forces. This effect is described by an array of numbers called

influence coefficients.

An influence coefficient, denoted (2ij' is a parameter having the

dimension of compliance or reciprocal of stiffness. It is defined as the static

deflection of a system at position i due to a unit force applied at position j

when the unit force is the only force acting. Hence the influence coefficient

is a measure of the elastic properties of a system. Influence coefficients are

conveniently used to keep account of all the induced deflections due to various

applied forces and to set up the differential equations of motion for the system.

The values of the influence coefficients are obtained for a given sys-

tem by applying a unit static load at point j and finding the resulting deflection

in the direction of the load at point i. The deflections, and therefore influence

coefficients, are obtained using the methods of static analysis (see examples

in Section XIV. B. 5). For a system with n degrees of freedom, the number
of influence coefficients will be n2. However, only n (n + 1)/2 will have

different values, because of reciprocity, (2.. = (2... Reciprocity is based on
_j jt

the face that the strain energy or stored work in an elastic system is the same
for both cases. As an illustration of reciprocity, consider the simply sup-

ported beam shown in Figure ill in which two vertical forces F 1 and F 2 are

applied at positions 1 and 2.

The influence coefficients for this illustration are (211, (212 and (221.

The deflection at position 1 due to the force F 2 applied at position 2 is F 2 (212.

Extending this concept the deflections at points 1 and 2 of the system due to

the applied loads F 1 and F 2 are written in terms of influence coefficients as

xl = (211FI + (212 F2

x2 = (221F1 + (222 F2 • (433)
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Figure 111. Simply supported beam with two loads.

For proof of reciprocity consider that the procedure of loading is

separated into two steps. First, when F 1 is applied alone, the potential

energy in the beam is 1/2 F12 _11. When F2 is then applied, the additional

deflection at position 1 due to the force F 2 is F 2 czi2. The work done by F1

corresponding to this deflection is FI(F 2 _12) • The total potential energy
in the system is then

I 1
U = _- Fi2 _il + FI(F2 _12) + _ F22 o_22 • (434)

The last two terms of this equation represent the additional potential energy
which is due to the application of F 2.

Second, when the force F_ is applied to station 2 and then the force

F 1 is applied to station 1; the total potential energy of the system is

i i
U = _- F22o_22 + F2(F I c_2_) + _ FI2 o_II . (435)

The last two terms of this equation are due to the application of F I.

Since the totalenergy and the product F i F 2 is the same, 0/12 must

equal (_21and reciprocity is proven for this simple case. Note than c_lldoes

not equal c_22because F i does not equal F 2 in the general case.

While the previous illustration is based on static forces acting on a

weightless beam, it should be realized that the reasoning applies equally
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well to any linear spring type system, and the forces could be inertia loads

developed by point masses.

Using influence coefficients, the equations for a linear system with

dynamic loads can now be written. Assuming a harmonic motion

x. = x. Sinwt
j jo

and

X. = -X. ¢02 Sin oJt
J ]0

a set of algebraic equations can be written for a system of n elements of mass.

2 2 2
x I = all (m 1 ¢o x 1) + o_12 (m 2 ¢o x 2) + ... + '_ln (mn ¢o Xn )

2 2 2
x2 = _21 (ml co x 1) + ot22 (m 2 co x 2) + "'" + ff2n (mn co Xn)

(436)

2 2 2
Xn = _nl (mr w x i) + Otn2 (m 2 w x2) + ... + O_nn (mn w Xn)

Dividing through the above equations by _2 and collecting the coefficients of

the variables xi, the set of equations may be rearranged as follows:

11 ml - w-'2" Xl + (_v12m2)x2 + "'" + (°tlnmn) Xn = 0

( i)(a21ml) xl + '_22 m2 - _ x2 + "'" + (_2nmn) Xn = 0

( 437)
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• .° m - X n(C_nl ml)xl + (t_n2 m2)x2 + + (_nn n w-_ = 0

These are linear homogeneous equations and are satisfied if the

determinant of the coefficients of x. in the above equation vanishes as follows:
1

( 1)allm 1 - w--_ (o_12m 2) ... (O_lnmn)

(_21ml) 22 m2 - _ ... (O_2nmn)

m -(anl ml) (an2 m2) "'" ann n

= 0

The above determinant, called the characteristic equation, will result

in an equation of n th degree in 1/w 2, leading to n natural frequencies of the

system. The mode shapes can then be determined from equation (437) by

substituting in the natural frequencies and solving for the amplitude ratios.

The solution of the frequency equation for n greater than 2 is normally

performed on a computer. For additional discussion of matrix theory and
application, see Paragraphs B. 5 and I. 3. of this section.

5, MATRIX ME THODS

The use of matrices in the study of multi-degree-of-freedom systems

has become an accepted language in vibrations and is widely used, especially

when digital computers are available. Matrix methods, common in vibration

work, follows• The material presented here is found in References 37 and

38. A review of applicable matrix theory is presented in Paragraph H. 4. of
this section.

For a linear system with multi-degree-of-freedom, the equations of

motion for free undamped vibration are
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mll ql + mi2 q2 + ''° + mln qn + kll ql + k12 q2 + "'" + kln qn = 0

m21"ql + m22q2 + "'" + m2n'qn + k21ql + k22q2 + "'" + k2nqn = 0

mnlql + mn2q2 + "'" + mnn}:]n + knl ql + kn2q2 + "'" + krmqn =0

where

m = generallzea mass
nn

qn = generalized coordinate

k = stiffness coefficient
nn

These equations can be written more concisely in matrix notations as

M(}_) + K(q) = (0) (438)

where

M

l l

mll m12 ... mln

m21 m22 ... m2n

mnl mn2 --- mnn
m

Z __

i i

kli k12 ..- kln

k21 k22 -.. k2n

k I kn2 -.. krm
j

and

m --

ql

q2

(q} = .

%
m --
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{q} is called the coordinate vector, M = [mij] is called the mass matrix,

and K = [kij] is called the stiffness matrix.

More generally, a linear system with applied excitation can be

described by a matrix equation of the form

M_) + C (¢1) + K (q) = <Q) (439)

where (Q) are the generalized forces corresponding to the generalized coor-

dinates (q), and [C] is the viscous damping matrix of the same order as

[M] and [K].

The above equation applies to all linear constant parameter vibratory

systems, and the specifications of any particular system are contained in the
coefficient matrices [M], [C] and [K]. The type of excitation is described

by the column matrix {Q). The individual terms in the coefficient matrices

have the following significance:

mii is the momentum component at i due to a unit velocity at j

c.. is the damping force at i due to a unit velocity at j
lj

k.. is the elastic force at i due to a unit displacement at j.
1j

In certain applications it is more convenient to deal with [K] -1, the

inverse of the stiffness matrix, than with [K]. The elements of [K] -1
' _ij'

will then represent a unit displacement at i due to a unit force applied at j

and are seen to be the influence coefficients discussed in the previous section.

[K]-1 itself is sometimes called the flexibility matrix.

The previous general discussion applied to a n-degree-of-freedom

system expressed in terms of the generalized coordinates. As an example,

a two-degree-of-freedom system described in terms of the more familiar

displacement coordinates will be presented. The differential equation, in

matrix format, is written as

[m]{R} + [c]{_¢} + [k]{x} = {f(tj}

For natural frequency determination Cl, c2, fl(t) and f2(t) all must be set

equal to zero. The solution, assumed to be sinusoidal, expressed in matrix

format, is
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ixix2[ala2 (440)

Since sinw t is not always zero
n

-Wn2[M] + [K]) (a) = (O) . (441)

For a practical vibration, the amplitudes al, a 2 cannot be zero and the

remaining quantity (-o9 2 [M] + [K]) must be zero. Expanding into determi-
nant form n

(k l + k 2 - w 2mr ) _k 2
n

_k2 (k 2 _ o9 2 m2 )
n

= 0 (442)

and into algebraic form

ml m2 o9 4 _ (k 2ml + klm2 + k2m2 ) w 2 + klk2 = 0 . (443)
n n

This is a quadratic in o9 2 and can be solved by the quadratic formula
n

to yield the two natural frequencies which are the positive values.

The values o9 2 are termed the eigenvalues (particular values) of the
n

-1
matrix [M K] which is called the dynamic matrix. This can be seen if

equation (441) is put in the form of an eigenvalue equation obtained by writing
equation (439) in the form

o9 2[M] (a} = [K] (a} (444)
n

-!
and multiplying both sides by [M] to obtain

[M -1 K] (a} = o9 2 (a} . (445)
n

This is the usual form for an eigenvalue equation with o9 2 representing the
n

eigenvalues and {a} representing the eigenvectors corresponding to the mode

shapes.
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An iteration technique is sometimes used to determine the eigen-

values. When using the iteration technique, equation (441) is written in

still another form obtained by a technique similar to equation (445).

tK -1 M] (a} = X{a} (446)

where

1
A =--_

o_
n

The technique of iteration utilizes an initial estimate for the mode

shape of vibration. The matrix equation is then expanded. The resulting
column is now normalized; i.e., reducing one of the amplitudes to unity by

dividing each term of the column by the particular amplitude. The process

is then repeated with the normalized column as the new estimate until the

amplitudes for the first mode converge to a value of acceptable accuracy.
The fundamental frequency can then be found directly from the matrix

equation. For the next higher mode shapes and natural frequencies, the

orthorgunality principle (Paragraph H. 5 of this section) is used to obtain a

new matrix equation that is free from any lower modes. The iterative

procedure is then repeated.

6. COORDINATE COUPLING

Coordinate coupling occurs when a force is transmitted by spring

or dashpot to more than one coordinate of the system. In other words, the

displacement of one mass will be felt by another mass in the same system

through the coupled elements.

There are two types of coupling action, generally referred to as

stiffness coupling due to static displacements and mass coupling due to inertia

forces. These two types of coupling will be discussed by the following

example.

A two-degree-of-freedom system is shown in Figure 112 and consists

of a mass m and two springs of stiffness k 1 and k 2. Any two independent

coordinates, such as x and _ from any origin, can be used to specify the

configuration of the system.

Considering Figure 112 with coordinates (x, _ ) and assuming small

oscillations, the equations of motion are
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STATIC COUPLING

Figure i12. Two-degree-of-freedom system.

m_ + (k 1 + k2)x - (kll I -k212)q) = 0 (447)

J'_ ÷ (kI112 + k2122)@ - (kIf! - k212) x = 0

Each of the above equations contain terms of both x and _ and are
therefore interdependent on each other. The motions of the mass will be

independent of each other only if the coupling term (k 1 11 - k2 12) is eqt_al

to zero; i.e., the center of gravity is located so that k 1 I l = k 2 12. O<' _vise,
the resultant motion of the mass will consist of both rectilinear and _:ttional

components when either a displacement or torque is applied thro, the center
of gravity of the body as an initial condition.

In the example described in Figure 112, the origir was chosen to

correspond with the center of gravity of the mass m. It Lhe origin were
chosen at any other location, mass terms as a function of both coordinates

will appear in the equations and the system would then be mass coupled in

addition to stiffness coupled.

The terms uncoupled modes and coupled modes often appear in vibration

terminology. These terms are used in reference to coupled systems. Some-

times in analysis or test the system is artificially constrained to make one or

more of the coordinates zero, resulting in an uncoupled mode. While the

uncoupled mode is of interest particularly in understanding the dynamics of

the system, the uncoupled and coupled modes are not the same.
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7. PLATES

The bending properties of a plate depend to a large extent on its

thickness as compared with its other dimensions. Timoshenko [39 ] uses

thickness to classify plates into three types:

a. Thin plates with small deflections.

b. Thin plates with large deflections.

c. Thick plates.

The assumptions, or a statement of second order terms neglected, are made

during the analysis for each of the classes of plates. In this paragraph, a

simple example of the first class from Reference 39 is discussed.

Consider a plate of uniform thickness h bounded by a constraint on

two edges and free on two edges and take the x-y plane as the middle plane

of the plate before loading. Let the y axis coincide with one of the longitudinal

edges of the plate and the z axis be downward as shown in Figure 113.

I
_Z

1 =! X

NIT LENGTH

1 1 _"'_I__ DEFLECTION W IN THE + Z DIRECTION

Figure 113. Thin plate with small deflection.

If the width of the strip is 1 and the depth is h, then the strip may be assumed

to De a bar of rectangular cross section of length 1 and depth h. It is

assumed that the cross sections of the bar remain plane during bending and

only a rotation with respect to their neutral axes is considered. If no normal

forces are applied to the end sections of the bar, the neutral surface of the
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bar coincides with the middle surface of the plate, and the unit elongation of

a fiber parallel to the x axis is proportional to its distance z measured from
the middle surface.

The deflection curve is given by -d_V/dx 2, where W is the deflection

of the bar in the z direction and is assumed to be small compared with the

length of the bar 1. The unit elongation of a fiber at a distance z from the

middle surface is denoted by _ and is given by
X

d2W
e = -z (448)x -&-r

as shown in Figure l14a.

G¥

_Yx

a b

Figure 114. Plate element free body.

Applying Hooke's law, the unit elongations e and e in terms of the
x y

normal stresses cr and a acting on the shaded element in Figure l14b are
x y

given by

1

% = E [% " "_J

1

•y = _ [_y - _1

(449)

where E is the modulus of elasticity and v is Poisson's ratio. Since the

lateral strain is zero, the second equation therefore gives
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£ = 0
Y

O" = l) O"
y x

and

1
e =- - (1-v27

x E x
(450)

For the stress

(x E (4517
x - 1-7- .

If the plate were subjected to either tensile or compressive forces

acting in the x.direction and uniformly distributed along the longitudinal sides

of the plate, the direct stress would have to be added to the stress due to

bending.

The bending moment in the strip is obtained by direct integration.

h

f_ Eh 3 d2WM = ax z dz = - 12(1_v27 -_ • (452)
h

2

Let

Eh 3
D -

12(1-vz7

Then the equation for the deflection curve of the elemental strip is given by

d2W (4537
D "_x = -M

The flexural rigidity of the plate D is the quantity that replaces the term E1

in the differential equation for beams.

Therefore, the deflection of the plate depends on an integration of

equation (453). The solution of the problem includes the definition of the
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boundary. The boundary may be simply supported (free to rotate), constrained

(not free to rotate) or somewhere in between.

If the boundary is constrained on all four sides, the curvature equation

assumes a more complex form and axial stress must be considered. For

circular plates, polar coordinates are used. More details on these problems
are found in the references.

C. Equations of Motion - Transients

In the previous paragraphs, the response of a system to a sinusoidal

input or combinations of sinusoidal imputs was developed. An input consist-

ing of one or more sinusoids or a truncated random disturbance of infinite

length is classified as steady state. In this paragraph, the equations of

motion are developed for a transient input. A definition of a transient is
difficult to state. One definition of a transient can be formulated from the

discussion in Paragraph A. 5.2 of this section. In Paragraph A. 5.2 of this

section, the time period of the disturbance T was assumed to be infinite for

the steady state input. If the time T cannot be assumed to be infinite, the

input is a transient. Thus, for a transient, the exact time of initiation and

cessation of the disturbance is pertinent to the response.

The response to transients is represented by an expression called in

the literature as the faltung Duhamel, or convolution integral. This integral

can be developed directly from the equation of motion or by superposition.

Both methods of development will be presented.

1. DUHAMEL INTEGRAL -- EQUATIONS OF MOTION

The derivation which follows is performed for a single degree-of-

freedom system with damping. Consider the equation of equilibrium as

discussed in Paragraph B. 1 of this section with a forcing function F.

m_ + c_ + kx = F

where the initial conditions are x = :_ = 0 when t = 0 and the force F begins to

act.

With these initialconditions, the solutionto thisequation is

F _o t wn
x = -_ I- c _ sinqt + cos qt (454)
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where

n

and

k c 2 J c 2n
O

If the force is withdrawn after an instant of time, St, the response

will be the sum of the expression above and a similar expression where the

force is negative and applied at t = 6t. The effect of these two forces is the

same as F 1 acting during the interval where 0 -_ t -_ 6t. The first term in

each equation cancels each other and the remaining terms take a functional
form of

x = fit) - f[t + (-6t)] (455)

Using the Taylor's series expansion for this form of the expression for x and

neglecting higher orders of 5t yields

d f(t) 5t (456)
x= d_

Substituting in equation (454), x as the function of t, provides the response
equation

= -0_ Cx FiSt e n-- t sin qt (457)
mq c

O

The above expression describes the response at time t resulting from a single
force applied at t = 0 and removed at t + St. It the force is applied at t = T,

the response at t becomes

C
-_ -- it-r)

X _ e n C= o sin q (t-r) . (458)
mq

By allowing F16t to approach F (r)dT and integrating the above expression

results in one form of Duhamel's integral

t

= f F(T) h (t-T) dTX

O

(459)

where F(_) is the forcing expression and h(t-r) contains all the system

parameters. The above expression can be integrated by parts
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t tit IE lx = h(t-_) f _(r) dr - f f _(r) dr d h(t-_)
o o 0

Suppose the integral part, iF(r) dr, is defined as zero for all time

of the integration interval except a small increment from -c to _. Suppose
also the value of the integral is one when integrated between -_ and c.

E

f F(r)dr = 1 (460)
-E

where E is a very small quantity. Equation (460) defines an impulse. Using
this specialized force the response becomes

t

x = h(t-r) - f dh(t-r) (461)
0

The second term is zero since h(t--r) is a step function. The response is

h(t-t) for the specific system considered which is nothing more than the

motion of a single degree-of-freedom system with damping. It is shown

in Reference 34 that the same result is obtained for a system of multiple
degrees of freedom.

If the force is not a single impulse but a general shape that can be

constructed from a set of impulses, general shape is represented by an
integration of the first term of equation (4617.

t

x(t) = f F(r) h(t-r) dr
o

(462)

Equation (462) is the common form of the transient integral. Negative
time is not considered.

2. DUHAMEL'S INTEGRAL -- SUPERPOSITION

Exactly the same result is obtained by superposition and direct

reasoning. This is the derivation most often presented in text books. An

individual forcing element is considered to be an impulse as defined above

E

f _(r)dr = i (463)
-E
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The complete force can be considered a superposition of impulses and in an

interval of time

F(T) = 23 5(T)A_" . (464)

Let h(t-r) be the response of the system to a single impulse. The response

to a force F iv) contains a number of impulses, each is acting on the system

at a different time.

x(t) = 23 5(T) h(t--r)AT (465)

or in the limit

t

x(t)= f F(T)h(t--r)dr . (4667
O

This equation is identical to the previously derived expression and also

represents the response at t for a force operating on the system in an inter-

val of time represented by a function of v.

3. TI:tANSIENT/STEADY STATE RELATIONSHIP

The response of a linear constant parameter system for any input

was derived in Paragraph C.1 of this section, and resulting in equation (4667,

the Duhamel equation

t

x(t) = / F(r) h(t-r) dr . (467)
O

An alternate and interchangeable form of equation (467) can be written with

the time delay associated with the forcing term in the integral. Equation
(467) then becomes

t

x(t) = f F(t-r) h(v) d_- . (468)
O

The forcing function is then established to be an exponential steady state

input of the form
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i_(t-r)
F(t--r) = e (469)

where w = radians per second.

i_rr
Equation (469) is substituted and the e term is brought outside the

integral since the integration is over the variable v.

t
iwt -i_-

x(t) = e f e h(T) dr . (470)
O

For a steady state periodic input, the integration limits can be considered

infinite and the integral defines the Laplace transform of the weighting

function h(_-). The Laplace transform, as suggested from the name, trans-

forms the problem from the time domain into the frequency domain (see

Paragraph H. 2. of this section) and x(t) is related to x(w).

iwt
x(_o) = e L[h(r)] (471)

As seen from equation (471), L[h(_)] = Laplace transform. The. Laplace

transform of the weighting function is a quantity that is easily obtained from

an analysis or from an actual test. However, it should be noted that the

input is an exponential and not a sinusoid. The weighting function itself in
the time domain is the inverse transform

L = h(_') . (472)

Without a computer, the evaluation of the inverse transform required

by equation (472) for typical xic_/e iwt ratios would be very cumbersome for

anything but the simplest dynamics system. However, with the advent of the

digital computer, this approach becomes practical. In addition, the weighting

function can be used with equations (462) and (468) to determine the response

of the system to any transient input.

D. Equations of Motion - Acoustic Impingement

1. RESPONSE EQUATION DERIVATION

Consider a spherical sound wave that has traveled unimpeded a long

distance from a sound source, whose "crests" are in a plane perpendicular
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to the direction of propagation. Such waves represent the simplest three-

dimensional wave and may be expressed in the form

f(r - ct) (473}

where

r = radial distance from the source = (x 2 + y2

c = velocity of the propagated wave
t = time .

A simplification of the more general case is obtained when a plane

wave is considered. For this special case the fronts are always perpendicular

to the x-axis, and the one dimensional wave is of the form

f(x - ct) (474)

The parameters describing this wave at some point in time and distance from

the source are expressed by

_x

where

5 = change in density

= displacement

This equation satisfies the requirement of conservation of matter. The chauge

in density is equal to the rate of change of displacement a_/ax. From the

thermodynamic gas laws relating the change in pressure to the change in

density

P = Tc Po _ (476)

where

P = pressure

c = specificheat (i.40 for air)

Po = atmospheric pressure

and for equilibrium
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where

az_ au aP

P _ = P at - ax (477)

p = mass density

u = velocity

which provides the net force (Sp/Dx) acting on the medium in terms of mass
and its acceleration.

Combining equations (475), (476), and (477), expressions for _,

p, 5 and the change in temperature A T in a plane sound wave are obtained.

a2_ t a2_
= c--T _ (478a)

O2P 1 82p

= c--y- -7 (478b)

a26 1 025
= 7" (478c)

where

and

p = p ,ye6 = ,oe2 a..._
o o_

Now

Po _" T . (479)
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The displacement, density, and pressure are parameters of the same wave

with a velocity c. For the purpose of illustration, the parameters can be

considered three separate waves propagating without change of shape and

with a velocity c. The three waves are not independent, but are related by

equilibrium, continuity, and thermodynamics through the equations above.

If the particle velocity is known, density and pressure can be determined.

The average energy of a volume of gas due to passage of a plane wave
is

w = _ _ fff + c 2 dx dydz ergs (480)

For a simple harmonic wave of frequency w this equation can be expressed

in terms of pressure P alone

w = _ fff + p2 dx dydz (481)

The rate at which the energy is being transmitted along the wave per

square centimeter of wavefront is called the intensity I of the sound wave.

This will equal the excess pressure P on the square centimeter, multiplied

by the velocity of the gas particle

(__) a_ Olj rgs/sec/cm 2 482)p =_pc2 _ _" e (

If the wave is a simple harmonic function; i.e.,

f(x-ct) = Pcos (¢ot-kx) (483)

where

P = maximum pressure

= angular frequency

k = wave number defined by a spatialperiod 2 Ir/kor I (commonly

referred to as wave length).

The expressions for pressure, energy, and intensity follow the sign conven-

tion of a wave moving to the right, having a maximum pressure P+
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p_ = p+ i(wt-kx) (484a)

_-_ = A _ti(c°t-kx) (484b)

O_ U_. i(wt-kx)
"_" = (484c)

whe re

K - 2___f A+ = - , U+ -
- C ' pc

Now

p+2 l

W+ - 2p'_ = _" p U+2 (485b)

p+2 1

I = 2pc 2 pc U+ 2 (485c1

For an example, consider a wave moving from the right and impinging

on an interface or rigid surface and assume the angle of incidence is perpen-

dicular to the surface. The total pressure developed on the surface is the

superposition of the incident wave and the reflected wave designated by P-.

p = p+ i(¢ot+kx) + p__i(wt+kx) (486)

and

_"0_ l= P--C" _ E p- Ei(wt-kx)- p_i(wt+k,x)J (487a)

i

W = 2_ (p+2 + p_2) (487b)

I = I (p+2 + p_2) (487c)
2pc
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In practical acoustic impingement problems, the medium dynamics

couples with the surface dynamics to form a very complex system. Because

of the complexity of this acoustic and structural dynamics, the analysis is

often augmented by empirical data.

2. PANEL RESPONSE TO RANDOM ACOUSTIC NOISE

In Paragraph 1. of this subsection, the basic acoustic impingement

equations were presented. The summary of that paragraph was that the

basic equations are often modified by empirical data. In this paragraph

additional analysis procedures are presented. These equations contain terms

that are more accurately evaluated by experiment.

Equations for the net vibration response at any point in a panel

structure can be written from the cumulative effect of all of the oscillatory

forces acting on the panel. Forces applied at discrete points induce local

vibrations at the points of application. These local vibrations are trans-

mitted along structural paths and are superimposed on other vibrations in

accordance with their relative amplitudes and phases. Looking at the panel

response problem in this manner, it is convenient to employ the space-time

correlation functions, since these functions include phase relationships.

Consider the panel structure shown in Figure 115.

of point j due to a pressure at i is

t

5!i) (t) = A. fo Pi (v) h (i) (t-v) d,
] z j

The deflection

(488)

Figure 115. Panel structure.

436



The deflection at j dueto a pressure at k is

t )

6! k) (t) = A k fo Pk iv) h (k) it-r)dr (489)
J j

where h symbolizes the weighting function.

Equations (488) and (489) are applications of the Duhamel integral.

The cross correlation, or measure of phase, between these two components
of deflections at j is

1 T (i) .(k)

r_T'(6jik)(0) = Tlimit--_ -_-- fo 6.j (t) Oj (t+0) dt (490)

where 0 is the time lag.

If the variables are changed by letting

E 1 = t-r ¢2 = t+0-r = t' = r

de 1 =-dr d_2=-dr

the responses become

co

8! i) (t) : A. f Pi (t-_l) h!i) (El) dE1 (491)
J I_c o J

( (k)5. k) (t+0) : A k Pk (t-E2+0) _ (e2) dE2 (492)
J -co

and the cross correlation for components of deflection at j due to pressures
at i and k becomes

R(Lk) (0) = AiAk f'=fX (O-62+el) h!i)(61)hj (k)(e')deldea ' (493)
6j =_ -=_ )'kk J
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The total deflection at j is

n (i)5.(t) = V 5 (t)

} i=l 3
(494)

After a time lag,O, the totaldeflectionis

n

"' 5!k)
5j (t-o) = ._I¢=1 J

(t-O) (495)

h_ order to obtain the power spectral densiW function, the autocorrelation

function for deflection at j is first written

(e) -- zRS.
k

(t,-O) (496)

where RSj (0) = autocorrelation function. Referring to Paragraph A. 5.b.

of this sec tion, the power spectral densi_' is directly written

+5 (:,:)__1f_ rts.(O)e-
j -_ j

_0
dO

1 -= n n (ik) e-iX8:-/ vvR (o) dO
-_ i k J

n n

vvl, _ f= _(ik)
i k -co J

(O)e -i_O dO

where ¢5. (w) = power spectral density. This latter expression can be
1

extended by a summation on the cross power spectral densit3, function to

include all inputs

no  ik)5. (_) -- v ,.v , (_)
3 i k 3

(498)
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It is now required to express the cross spectral density function in terms of
the structure. This may bedoneas follows:

5. (¢o) - _ R (0)e dO (499a)
j -¢o j

4_(ik) (co) : AiA k f_ R (0-e2+_l) e -k°(0-e2+ei) dO (499b)
aj -co Pik

el) e-i°'le' del f_h! k) (e2) e-iU'_2de2
J

where Ai, A k = areas at i and k. The first integral of Equation (499b) is the
( i) *(i)

power spectral density, H: represents the second equation, and H. (w)
J J

represnets the last integral. Or

#! i.k) (co) = AiA k _ (co) _I i) (co) H(k) (co) (500)
8j Pik J "

Now substituting for @_.ik)(w),
J

n n

i(ik) (o_) = _ Z AIA k _ (o0) I_li)(w) tI (k)(w) (501)
8. " Pik J "j i k

The deflection power spectrum at j is stated in Equation (501). The

summation of the product of these areas over which the pressures act, the

power spectrum of those pressures and the weighting functions represent all

input sources. Expressing the power spectral density functions for deflection
in matrix form:

(502)

(taxi) ( xn) (.xn)
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where

andT indicates the transpose. The areas and pressure power spectra are

measurable or calculable. The impulse responses of deflection can be obtained

as follows. Assume there are 5. degrees of freedom. The equations of
1

motion can then be written as

(_x_) (r_)

Talcing Laplace transforms

+ (Kik)(Si)= IF(t)]. (503)

(v)
(5i )]

(v)

-1 (v)
(504)

where

v = any point

S = Laplace variable.

The Laplace transforms of the responses to unit impulses at each mode are
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The complex frequency responsematrices are obtainedby

or

-1

This can be carried further, if desired, to forces in the structure and to

stresses. For example:

{r } = [Kik ](6 i }

and

(f} = [D]{F} = [b] [Kik] {6i}

The power spectra of stress then are

(_f(c0)} = [b][Kik][Hlk)(c0,]

[ Kik]
T T

[b]

[Ai ] [4_ ]Pik

f = stress

b = factor converting deflection to stress

k = deflection times stiffness.

where

(506)

(507)

(508)

(509)

The pressure power spectra can be calculated.

virtual work done on a panel by the acoustic pressure field is

Consider the following: The

(t) (51o)
ab

r_ = ff p(x,y,t)_ *mn(X, y) 6qmn
o o m n
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where

x, y = coordinates

q = generalized deflection.

The generalized force in the mn mode is

a(5_} a b

Qmn(t) -- a(8_) -- fofo P(_' y' t) _n_ (x, y) d_dy
. (511)

By definition, the cross correlation of the generalized forces in two pairs of

modes (mn and rs) is

T
1

RQ (T) = lim _-" f Qmn (t) Qrs (t+T) dt (512)
mn T -_ T
rs

T[a, ]lim _2T f ff p(x' y, t) _mn(X' y) dxdy

T-_ T o o

/? p(x 1, t+r)(x 1, yl)dx dy|

1
Yl,

OO ]
dt.

Rearranging,

l_Qmn
rs

(_)  ,ab[T l= ffff lira _ f p(x,y,t) p(Xl, yi, t+r) dt
2T

oooo T-.co T

(_,y)
Inn rs

(xl, Yi) dx dx 1 dy dy i

(5i3)
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where a and b are dimension limits of the panel. The cross power spectrum

of the generalized force is then

oo

= _ f RQmn -iwt
!_) 1 (r)e d7 . (514)

Qmn _ -_
rs rs

Equation (502) is the basic equation for calculating panel response.

This response is in ten]is of power spectral density. The weighting functions

are obtained from equation (506). These weighting functions can be computed

from laboratory measurements. The areas are easily obtained and the power

spectra of the pressures are an input.

E. Application and Examples - Direct Steady State Forcing

1. LUMPED PARAMETER SYSTEMS

The analysis of a structure necessitates the selection of an idealized

moclel of the structure. Most often this idealization consists of lumping the

mass into discrete points and considering the remainder of the system

weightless springs. The constructed model should have dynamic characteris-

tics similar to the system under analysis.

Several limped pa1,'ameter analysis methods are available. One

method, influence coefficients, was presented in some detail in Paragraph

B.4. of this section. Other methods will be only briefly discussed in this

paragraph since these methods are often discussed in detail in the common

texts on vibration. These methods are:

a. Stodola.

b. Rayleigh or energs'.

c. Holzer and Myldestad.

a. Stodola Method

The Stodola method was originally developed to determine the lateral

vibrations of turbine rotors, but can be extended as a method of obtaining

either the bending or torsional natural frequencies an(I modes of nontufiform

vibrating beams.
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The Stodola method initially assumes a mode shape usually based

upon static deflection. Starting with the inertial loading of the system,

successive integrations produce the deflection of the beam due to dynamic

loading. The process essentially consists of solving equation (394) by trial
and without damping. An iteration or two utilizing previously calculated

deflections as the assumed deflection converges to a constant ratio of the

assumed deflections to the calculated deflections. The natural frequency of

the first mode is found by multiplying the initially assumed frequency by the
average of the ratios of the mass element deflections.

Consider a beam at any time t, the inertia loading is proportional to

mass, frequency squared and the deflection curve y(x). If a deflection curve

y(x) is artitrarily chosen and w arbitrarily set equal to unity, then a deflec-

tion curve can be determined by using the equivalent static load. Starting

with the beam loading, successive integrations give the shear, bending

moment, slope and deflection. The result will be gi{x), a new deflection

curve. Using yl(x) as a deflection curve, the process of successive integra-

tion is repeated and another deflection curve, y3(x), is obtained. The

operation is repeated until two successively determined deflection curves are

of constant ratio to each other at each point on the beam. The final curve

represents the fundamental mode of the beam.

b. Rayleigh Method

In Paragraph B. 2. of this section, the energy of a vibrating system

was discussed. The energy method is combined with the procedure of succes-

sive iterations to form the Rayleigh method. In this respect the Rayleigh
method is similar to the Stodola method.

If a beam is represented by a series of lumped masses Wl/g , W_/g,

W_/g...Wn/g , and the system is considered to be conservative or undamped,

the maximum strain energy can be determined from the work done by these

loads. The first approximations are provided by determining the static

deflections Yl, Y2, Y3 • • • Yn and applying the deflections to the energy equations.

For a lumped mass system

n W.

= _, 1 i w2y 2 Kinetic energy (515a)
Tmax _=1 2 g i
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n
1

Umax = 1_=_1_ Wi Yi
Potential energy, (515b)

By equating equations (515a) and (515b), the frequency isestablished as

2
o3

n

Wi Yi=1
g

n
,)

Wi Yi_
I= I

(516)

w he re

W = lumped masses
n

Yn = deflection at each mass.

The deflection can be determined for the first approximation by any one of

several strength of materials methods. A second set of deflections is obtained

from the resulting frequency, w. The iterations are then continued until the

desired accuracy is obtained.

c. Holzer Method

Holzer's method can be used to calculate higher modes inaddition to

the fundamental mode. In thisoutline of the Holzer method, a torsional model

will be used.

Consider a vibration system represented by a series of disks connected

by shafts of stiffness Kl, K2, K 3 ... K n and vibrating with frequency w. The

external torque required to maintain the vibration is zero at all system natural
frequencies. The external torque required will not be zero for frequencies

other than the natural frequencies. The amplitude of a disk is assumed to

remain constant while an external torque is computed. If the external torque

required to excite a system is plotted as a function of frequency, a natural

mode will be identified at every point on the plot where the curve crosses the
abscissa.
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The Holzer methodcanbe applied to bothbendingand torsional mode
solutions; however, it is primarily usedto solve torsional modeproblems
due to the laborious calculations required for bendingmode solutions.

Myklestad Method

The Myklestad method is similar to ihe Holzer method in that a trial

frequency must be assumed and, after including the mass and stiffness of the

beam or shaft, a residual function results. This residual function may be a

slope or bending moment. After two or more iterations a curve of the residual

function, similar to the torque remainder curve of the Holzer method is plotted

against the assumed frequency. The zero points of this function identify the

natural frequencies of the system.

The procedure is more involved than the Holzer method because the

assumed frequency must satisfy the four boundary conditions of bending

moment, shear, slope, and deflection. For any assumed frequency, wn, the

bending moment and displacement diagrams can be constructed to satify three

of the four boundary conditions. By plotting the fourth boundary condition

against w, the natural frequency, Wn, will occur when this remainder equals
zero.

2. DISTRIBUTED PARAMETER SYSTEMS

Examples of mechanical systems that have their masses and elastic

forces distributed are cables, rods, beams, plates, shells, menbranes, etc.

Distributed systems have an infinite number of degrees of freedom and

natural frequencies. Each natural frequency has an unique mode shape, which
is known as its characteristic function or normal function. A transient or

steady state forced vibration generally will excite many or all of these fre-

quencies in combination. The net response of a particular point is the combined
effect of all modes.

The differential equation for the transverse vibration of beams is derived

as follows. Consider a beam of uniform section, weight and stiffness as shown

in Figure 116. From Figure 116,

dV = -f(x)

dM
u _ V

dx
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w he re

Y

X

M _ TIX! d X

Figure 116.

M = -EI d_x

_U

v+ -_-- d X

Beam element, free body section.

V = shear

M = bending moment

_EI = fiexural rigidity

f(x) = distributed loads per unit length.

Combining the free body equations gives

Therefore

- -f(x)

_xx EI = f(x)

The distributed load f(x) on the beam is the inertia load and equals the

product of its mass and acceleration.

ration so that

(517)

(518)

Its direction is opposite to the accele-
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W
f(x) =

g a_. • (519)

If the beam vibrates harmonically and the acceleration is 092y, then the

distributed load f(x) becomes

f(x) _ w w2y . (520)
g

Thus, the differential equation for a distributed parameter beam is

dd_X w 09 2g EI Y = 0

From differential equations a solution of the type

y = X(x) T(t) (522)

can be assumed. Substituting this equation into the fourth order differential

equation gives the result

x1V(x) W T1V(t; 2

X(x) gEI T(t)

where k is a constant. Thus, two linear homogeneous differential equations
are obtained

xlV(x) + k 2 X(x) = 0 (524)

TiV(t) + X2 gEI T(t) = 0 (525)
W

The general solution of equation (523) is

X = Cle xx + C2e -Ax + Cse i_x + C4e -ixx (526)

and expressed in terms of trigonometric functions is

X = B lcoshAx + B 2 sinhXx + B_coskx + B 4sinkx (527)
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The values of the constants can be determined for any given type of beam

from the boundary conditions. For a deflected beam y is the deflection, dy/dx

is the slope, d2y/dx 2 is a function of the bending moment, and d3y/dx 3 is the

shear function. The end boundary conditions depend on the type of supports

that are used for the beam. The four main categories of end boundary condi-

tions are pinned, clamped, sliding and free.

An illustration of the determination of natural frequencies and mode

shapes of a uniform beam follows. Assume a beam of length L and pinned

at both ends. The boundary conditions for a pinned end beam are: When

x= 0orx= L, theny= 0andd2y/dx 2 = 0. For the assumed solution to

satisfy these conditions, it is necessary that XT vanish when x = 0 or x = L

for all t and that T' (0) = 0, where T' (0) is the initial velocity of any point

along the length of the beam. Since the beam is at rest, initially, T'(0) must

be zero. Substituting these conditions into equation (527) gives

B1 +B3= 0

B 1 = B 3

Therefore, B 1 and B 3 are zero and

X = B 2 sinh/x + B 4 sinXx

For the other boundary condition y -- o when x = L and d2y/dx 2 = 0

the results are as follows:

X = 0 = B 2 s inhkL + B 4 s inXL

X" = 0 = B 2k 2 sinhkx - B_A 2 sinkx

Thus,

B 2 sinhkL = 0

B 4 sinhXL = 0 .

Since sinh_.L cannot equal zero, B 2 must equal zero. Since the deflection of

the beam is always zero when x = L, any values of XL whose sine equals zero

will satisfy the equation. Therefore, the equation

B 4 sinlL = 0
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is satisfied when L = N since B 4 cannot always be zero. The letter N is

the m nber oJ the natural frequency or mode shape. Now X can be evaluated
to be }, = :/L, and the first part of the assmned solution will be

STr

X(x) = B 4sin _ x (528)

Solving equation (525) by similar means and using the value of _ it
can be shown that the second part of equation (522) is

T = C cosN2r 2 Ew_LIt (529)

This gives the general solution as

N_rx _EIcosN2_ 2 ]- __- ty = B N sin L _4wL _
(530)

The value of BN is the maximum displacement or the amplitude of the free

vibration. It is dependent upon the initial conditions of displacement and
vel oc ity.

A similar analysis can be made on other types of beams if the end

boundary conditions are known. The boundary conditions can be found in
many vibration text books.

. EXPERIMENTAL DETERMINATION OF SYSTEM PARAMETERS
FOR THIN WALLED CYLINDERS

Under MSFC research contracts, analytic and experimental work was

performed on thin walled cylinders with and without attached weights. Detail

results of this work are described in References 40, 41, 42, and 43. In this
paragraph a summary of the results are presented.

The program was directed toward the development of methods to

predict dynamic responses of a pressurized-ring and stringer-stiffened

cylinder to which concentrated mass items are attached. This type of struc-

ture is typical of a launch vehicle which is exposed to mechanical and acousti-

cal random vibrations. The program combined analytical and empirical

methods to predict frequencies and mode shapes of simple cases then contin-

ued to more complex structures.
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In order to makea realistic analysis, experiments were conducted
to determine the significant parameters contributing to the dynamic response
of pressurized stiffened cylinders with and without attachedconcentrated
mass. Someof the dynamic properties determined from experiments are
summarized below.

a. The structural dampingof the cylinder measured from test data

was found to be low (generally less than one percent of critical).

b. The dynamic response of the unweighted pressure stiffened

cylinder consisted of many non-sinusoidal circumferential waves involving
the stringers and several lonitudinal waves with modes at the frames. The

stringers did not greatly influence modes at the higher modes.

c. As the magnitude of attached weights was increased, the modal

response became increasingly localized. Treating the stiffened cylinder

with an attached mass as a single-degree-of-freedom system, a simple

empirical method was devised to calculate the fundamental frequency f.

1 /K(386.4)
f = 2"_ _/_ +W

e a

(531)

where

W = added weight
a

W = ef_ctive cylinder weight
e

K = spring constant

All parameters were empirically determined [40 ]. This empirical

formulation is satisfactory in making a first estimate of the fundamental

frequency. However, the model is considered incomplete and attempts to

apply this formula outside the limited range of structural parameters from

which they were derived is not recommended.

a. Anal_ical Methods and Assumptions

A more complete analytical method was developed to predict mode

shapes and resonant frequencies of pressurized cylinders with ring frames,

stringers, and attached mass. The analysis was substantiated by tests and

supported by empirical data.
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Twoapproacheswere usedto analyze the cylinder [43]. Oneapproach
considers the stringers as discrete elements (discrete analysis) supporting

the shell and the other assumed the stringer spread uniformly over the surface

to produce an orthotropic shell. The dynamic analysis of the ring and stringer

stiffened pressurized cylinder was based upon the energy method using

Lagragne's equation (Paragraph B. 3. of this section).

d<0T) 0 (532)

where

T = potential energy of the system

U = kinetic energy of the system

q = generalized coordinates

i = 1, 2, 3 .

From an assumed vibratory motion of the structure, the potential

and kinetic energy excursions from the initial pressurized state were

determined for the cylinder with no attached weight. The potential energy

of the system is the integrated strain energy of the shell, stringers, and

rings. The total kinetic energ_ is the integrated kinetic energy of the shell,
stringers, and rings.

The frequencies and mode shapes of cylinders with an attached weight,

_W, were determined by accounting for the potential and kinetic energy of

the added weight for each mode, combining with the potential and kinetic

energies for orthogonal modes of the cylinder and applying the results to

Lagrange's equation. The displacements of the attached weight were

expressed in terms of the generalized model function at the point of attach-

ment. The assumed mode shapes were of the form

P = q(1) coskB cosklx
kl

V _(2) sinkB sinklx= qkl

W _(3) cosk8 sinklx
= qkl
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where

(i) = generalized coordinate (function of time only)qkl

i = i, 2, 3

k and I = circumferential and longitudinal wave numbers, respectively.

Figure 117 illustrates the cylinder geometric and displacement field.

-_ L _-----RING FRAME SPACING

F /-/r

I I
X

NOTE:

CYLINDRICAL COORDINATE q_ax
CORRESPONDING DISPLACEMENTS
RADIUS a = CONSTANT

v_/J

Figure 117. Cylinder geometry and displacement field.

For the actual analysis, assumptions were required. Classification

of these assumptions led to two types of analyses: discrete and orthotropic.

t. Discrete Analysis

For the discrete analysis, the energy due to the stringers are summed

with the skin energ-y. Specific assumptions for this analysis include:
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a. The shells are considered thin and Love-type strain-displacement

relationships with Donnell large deflection terms are used to account for non-

linear effects due to pressurization.

b. The nonlinear effects caused by pressurization arise from an

axisymmetric staticstress statewithin the cylinder (i.e., membrane

stresses developed in the skin}. The effectsof pressurization adequately

included without considering localized bending due to rings, end fixity,or

stringers.

c. The ring frames are considered sufficiently rigid such that their

potential energy is negligible in comparison to the stringer and shell potential

energies.

d. The frequencies for unweighted, stiffened cylinders can be

predicted by employing the mode shapes of unstiffened cylinders with

Rayle igh-Ritz energy methods.

e. The resulting eigenvalue equations may be linearized while

still retaining nonlinear effects.

2. Orthotropic Analysis

For the orthotropic analysis, the mass and stiffness of the stringer

and the skin are combined to form an orthotropic shell. The orthotropic

shell is then treated as a single thickness cylinder. Two additional assump-

tions are required for the orthotropic analysis:

a. The stringers are sufficiently small and closely spaced such that

their stretching and bending stiffnesses and mass contribution can be

"smeared out" uniformly (with the skins) around the cylinder.

b. The nonlinear effects caused by pressurization can be obtained

from the axisymmetric static stress state of the combined stringer and the

shell idealizations. This assumption replaces the second assumption listed

under discrete analysis.

Using either the discrete or orthotropic analysis, the kinetic and

potential energies are idealized and the summations of the energy terms are

applied to Lagrange's equation (Paragraph B.3. of this section). The

resulting equation in matrix form is
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where

2

C
(533)

O3
C

= the resonance of the cylinder coupled with the attached

we ight

= the diagonal dynamic matrix associated with the

cylinder structure

= the matrix associated with the attached weight

= the generalized normal coordinates

o mjo3j2 o]=

the product of the diagonal dynamic matrix and the th
eigenvalue o3.2 for the unweighted cylinder for each j

]
mode or jth 1, k combination.

For the unweighted cylinder, eigenvalues, o32, and eigenvectors, q(i), were

first determined for various values of 1 and k. M. and AM were titan corn-
]

puted and inserted into equation (533). The n by n system of algebraic

equations, represented by equation (533), was solved for the coupled eigen-

values, Wc2, and the eigenvectors, qj (3), using a computerized iteration

scheme [ 42].

In the following paragraphs, comparisons are made of analytical and

experimental results. The conditions under which the analytical assumptions

are valid are discussed for both the discrete and orthotropic approach. For

cylinders having a large attached weight compated with the cylinder stiffness

on improved analysis, see Paragraph E.3.c. of this section.
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Test methodsand the approachto testing usedfor theseanalyses
are presented in the references. The following paragraphs present discus-
sions of the results of the tests and analytical work for dynamic response

of cylinders with stringers and attached weights, response of cylinders to
discrete frequency mechanical excitation and response of cylinders to

acoustic excitation.

b. Effect of Stringers and Attached Weight

The dynamic response analysis of a stiffened, pressurized cylinder

with attached concentrated weights using Lagrangian energy methods, gave

satisfactory results when applied to cylinders with many stiff stringers.

This method also gave satisfactory results when applied to stringerless

cylinders and cylinders with rings but without stringers, the analysis loses

accuracy as the attached weight increases. The large discrepancy in pre-

dicted frequency and mode shape due to heavy weights was attributed to the

slow convergence of the trial modes used to represent the sharply cusped

response of the cylinder in the immediate vicinity of the weight. The fre-

quency calculations for the unstiffened cylinder appear highly sensitive to

small discrepancies in the longitudinal mode shape. Agreement of experi-

mental and theoretical natural frequency was poor for the fundamental fre-

quency, but good at the higher modes. This was attributed to the sensitivity

of fundamental frequency to small changes in added weights which strongly

effects the local mode shape.

For cylinders with stringers, the increased stiffness somewhat

reduced the large error in predicting the longitudinal mode shape especially
in the localized area near the added weight. Thus, the assumed mode shapes

appear satisfactory for stringer stiffened cylinders even with the heavier

attached weight. Trial mode shape functions with more rapid decay in the

longitudinal direction may improve predictions for the unstiffened cylinder.

Test results on the cylinder with only ring frames confirmed that the

rings were sufficiently rigid to contain the responses within the bay that

was dynamically excited. Therefore, isolating a single bay between rings

(assumption c) and performing the analysis as a ringless cylinder of shorter

length was justified.

From the discrete stringer analysis the unweighted cylinder had the

fundamental frequency occurring at k = 12 circumferential full waves, with

antinodes at each stringer. The orthotropic analysis did not show this.

Other than the fundamental resonance there seemed to be little relation

between the number of shell stringers and k, the number of circumferential

w ave s.
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The results of a parametric study demonstrated the importance of a

discrete analysis when few _tringers are present in the structure. The

simpler orthotropic analysis was satisfactory only when a "sufficient"

number of stringers were employed in the stiffened cylinder. It is difficult

to define what a "sufficient" number of stringers is because it depends on

the stiffness ratio of stringer to shell, spacing, and other factors. The

substitution of the simpler orthotropic model for the discrete stringer-sheU
idealization must be made with caution.

c. Improved Analysis

In order to improve the accuracy of the analysis technique, another

analysis [41 ] was developed to predict the dynamic response of a ring

stiffened pressurized cylinder with attached concentrated weight but with

no stringers. This improved analysis was directed toward reducing the

large error in predicting the highly cusped localized response of stringerless

cylinders in the vicinity of the attached weight.

This analysis employes a variational technique and the principle of

minimum potential energy to form the equations of motion and boundary

conditions. Love's first approximation and DonneU type nonlinear terms
were assumed for the strain-displacement relations.

A computer program [43], based upon the improved analysis, is

presently capable of computing the resonant frequencies of pressurized

cylinders with ring frames and attached mass. Mode shape prediction, also

a part of the program, has not yet been completed. Analytical and experi-

mental fundamental resonant frequency results show good agreement for

all weights considered and for mid bay and quarter bay attachment points
between ring frames. Satisfactory predictions require a Fourier series
order of truncation N* = 75.

d. Response to Discrete Frequency Mechanical Excitation

An analysis was developed [41 ] to express the steady state response

of a cylinder shell to applied external sinusoidal forcing functions using the

method of normal modes and energy methods. The derivation considered an

unloaded cylindrical shell with damping and was extended to include the

effects of added concentrated weights. This analysis was used to predict

driving point and transfer mobilities versus frequency.
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Driving point mobilities showed faircorrelation with experimental

results at frequencies below the above resonance. Transfer mobility corre-

lated poorly with experimental values. Since only the fundamental mode

shape value of the transfer point was considered, knowledge of the shell

modes in the vicinityof the resonant frequency of the weight may be required

in order to improve the accuracy of the transfer mobility prediction.

e. Respone to Acoustic Excitation

The response analysis of a cylindricalshell for an acoustical

pressure environment should include an area integrationof the pressure over

the surface of the shell, as well as an integrationof the pressure over a

frequency spectrum, ifthe acoustical environment is random. However,

the testprogram has shown thatwhen the shell isloaded with a relatively

heavy discrete weight, the primary resonance is characteristic of a single-

degree-of-freedom system. Only the shell surface in the vicinity of the

mass has any appreciable responses. Therefore, an approximate analytical

estimation of the response of a shell with a discrete mass to acoustic pres-

sure excitation may be obtained by considering only a small shell surface in

the vicinity of the mass. It appears that if the shell is excited acoustically

within this small shell area, the response of the mass at its resonant fre-

quency should not differ markedly from that obtained in an acoustic environ-

ment encompassing the entire shell. An analysis was developed [41 ] to

estimate the velocity response of the discrete mass to acoustic noise,

channeled within a square area that includes the mass.

i. Discrete Frequency Acoustic Excitation

Acoustic tests were conducted [41 ] using discrete frequency acoustic

noise, directed at 232.25 cm 2 (36 in.2) area containing a concentrated weight.

Correlation of predicted results was fairconsidering the accuracy of mea-

sured data and the difference between the assumed pointloading on the

weight and the distributed (pressure) loading over an area. Also, the

analysis assumes that the weight responds as a single-degree-of-freedom

system and coupling of higher frequency modes are negligible. Part of the

difference between experimental and analytical results may be attributed to

these higher frequency modes.

2. Random Acoustic Excitation

i

The response of the cylinder excited by a reverberant random

acoustic excitationwas predicted [41 ] based upon a transfer function obtained

from the discrete frequency acoustic tests.

458



The predicted rms response of the weight was 0.19 G as com-
rms

pared to the experimental value of 0.64 Grm s. The disagreement between

the experimental and predicted response may be attributed to the following
factors:

a. The prediction of the response of the weight was based on the

assumption that the transfer function obtained from the sinusoidal acoustic

test was an estimate of the transfer function. This is predicted on the

assumption of linearity of the steady state response of the weight to a sinu-
soidal pressure excitation of the cylindrical shell; i.e., that the ratio of

g/psi is constant for any amplitude of pressure excitation. However, the shell

characteristics may be such that a nonlinear relationship exists between the

acceleration _'esponse and the acoustic pressure excitation, resulting in a

departure from the transfer function used in the analysis. It was also
assumed that the transfer function obtained from the channeled sinusoidal

acoustic horn test is an approximation to the transfer function of the weight

excited by random acoustic environment encompassing the entire shell.

While this is predominantly the case, it is to be expected that with more

of the shell surface exposed to the acoustic environment (either random or

sinusoidal), additional shell modes may affect the acceleration response of

weight to the acoustic pressure environment.

b. The data used in the analysis were accurate to within -_2 Hz on

the frequency scale and to within 4-10 percent on the response scale, A

shift in the noise by 1.5 Hz resulted in the predicted rms acceleration response

of the weight from 0.19 g's (rms) to 0.31 G compared to an experimental
value of 0.64 G rms

rms'

The utilization of the experimental transfer function obtained from the
channeled sinusoidal acoustic noise in the reverberation chamber test did

result in a prediction within a factor of two to four of the experimental rms

response of the weight. (Recent studies of transfer functions obtained from
acoustic test chambers indicate a variation due to the mode of testing; i.e.,

reverberant, free field, or progressive wave.)

f. C onclus ions

Analytical and experimental studies summarized in these paragraphs
and described in References 40 through 44, provide useful background on the

understanding of the dynamic response of stiffened cylinders with attached

weights. Analytical methods were developed to predict mode shapes and
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natural frequencies. Experiments were addressedto the verification of
system parameters used in the analysis.

1 EXPERIMENTAL DETERMINATION OF LOCAL STRUCTURE TO

BE USED IN LABORATORY TESTING

The presentation in Paragraph 3. above covered the response of

complete cylinders to acoustic impingement. The test cylinders were

designed as research specimens to help identify the pertinent parameters
required for analysis. In this paragraph structural approaches more typical

of a large space vehicle are discussed. Both the segment approach and

the model approach are presented.

Like the previous paragraph, this paragraph presents a summary of

work performed under MSFC contracts. Detail reports of this work are in

References 45 through 48.

Critical components, mounted to the shell structures of the present-

day launch vehicles, are subjected to high vibration and acoustic environ-

ments during boost and atmospheric flight. Vibration testing is essential

in establishing confidence in the successful operation of the components

under these extreme environments. It would be economically advantageous

to be able to vibration test these components using representative shell

segments instead of testing large portions of the vehicle. An important

aspect of any test requirement is to simulate the localized dynamic charac-

teristicsof the segment and the components. The purpose of this program

was to investigate the feasibility of the segment test approach and to

develop techniques in design and testing of shell segments (with mounted

components) from typical large structures.

To evaluate the feasibility of the segment testing approach, analytical

and experimental studies were performed on flexibly supported fiat paltes,

models of complete shells of revolution, model segmented shells, a full-

scale shell of revolution and a full scale segment. Structures from the

Saturn V launch vehicle were used in this study. Model shells include the

following portions of the Saturn V launch vehicle:

a. Instrument Unit.

b. S-II thrust cone structure and forward skirt.

c. S-IC oxidizer tank upper bulkhead.
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A rectangular plate is usedto analytically andexperimentally study
the effects of various boundaryand restraint conditions on dynamic response.
Completemodel shells were usedto study dynamic responsesandto esti-
mate the "_undary conditions for their segznents. Model segmentsare used
to verify design of the boundaryrestraints. Model results are correlated
with data from full-scale tests on the complete cylindrical section and seg-
ments of the Instrument Unit.

a. Plate BoundaryRestraint Study

The effects of boundaryconditions on a test structure were investigated

[45 ] by studying dynamic response of a rectangular plate with various condi-

tions of free edges and elastic point supports. This investigation also serves

as a starting point for developing analyses for a segmented shell with point

supports and concentrated weight attachments.

The finite difference method was used to solve the vibration problem

of a flexible-point-supported plate. The plate was considered to have spring

supports at discrete points along the edge of the plate. These supports were

assumed to have spring and viscous damping restraint against deflection, but

no restraint against rotation (no bending moment). To determine the natural

frequencies and the corresponding mode shapes, loading was considered as

inertial loading of the plate. Provisions can be made for additional loading

due to concentrated mass attached to the plate.

The finite difference method transforms the partial differential

equation and boundary conditions into a finite difference equation in terms

of normal displacement at selected grid points. Additional grid points were

used beyond the plate boundary. The problem was reduced to eigenvalue

matrix formulation and the numerical solution of the final matrix equation

yielded the modal and frequency data of the rectangular plate. The computer

programs for the solution of the plate analysis are given in Reference 45.

A 50.8 x 60.96 x 0. 317 cm (20 by 24 by 1/8 inch) rectangular alumi-

num plate, flexibly supported at discrete points, was tested to determine its

natural frequencies and corresponding mode shapes. The supports had

restraints against normal deflection but not against rotation. The spring

stiffnesses and locations were varied to determine their effect upon response.

The plate was mechanically excited.
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It was found that the wave patterns and resonant frequencies of a

plate which is continuously supported along its edges could be approximated

for some modes by using discrete point supports.

Although the behavior of the plate close to the edges was unpredictable

in many cases, the behavior in the interior of the plate was, in general,

predictable. The detail test results, given in Reference 45, strongly suggest

the desirability to use the finite difference method to analyze flexibly

supported rectangular plates and segmented shells. Also, simulating contin-

uous boundary conditions of segmented shells with the more practical dis-

crete point supports is justified.

b. Shell Dynamic Analysis

To investigatethe overall shell dynamic behavior prior to segmenta-

tion, four scale models were fabricated based on various parts of Saturn V

structures. Duplicate models were made for segmentation purposes. The

scale models which were manufactured and tested are listedbelow:

a. Instrument Unit, 1.6.67 scale.

b. S-II thrust cone including simulated rocket engines, 1:10 scale.

c. S-II forward skirt including LOX tank upper bulkhead, 1:10 scale.

d. S-IC LOX tank upper bulkhead including partial cylindrical shell

structure, 1:10 scale.

The detail technique in scale model design is described in Section V of

Reference 46. Structural details and experimental data on the models are

given in Reference 45.

Analytical and experimental programs were conducted to determine

the vibration and dynamic response behavior of the shell structures. In the

analytical phase, partial differential equations were established along the

shell meridian. The dependent variables include three displacement compon-

ents, the angle of rotation and the four shell internal stress components in the

same directions as the four displacement variables.

The stress variables are the transverse shear, the membrane stresses

and the meridian bending moment. For each circumferential harmonic num-

ber, the equations were solved numerically to yield proper modal and frequency

462



data. The dynamic effects of the stringers and the ring stiffeners were

handled differently. For the stringers which were located along the shell

meridians, their stiffness was averaged and merged with the shell to form

a mean stiffness. For the ring stiffeners, the dynamic impedances were

formulated individually. The impedances were represented in terms of the

increments of the shell internal stresses as functions of the local displace-

ments. These increments were introduced into the differential equations at

the ring stiffener locations during numerical integration. The computer

program to execute the integration and typical modal and frequency data for

shell structure models are presented in Reference 47.

In the experimental phase, the complete model sections, with and

without mass attachments, were subjected to the same external discrete

frequency forcing function. The resonant frequencies, mode shapes of the

basic structure and acceleration measurements of the lumped masses simu-

lating the shell components were recorded. For each point of mass attach-

ment, a measurement of mechanical point impedance was made over the

frequency range of interest for use in verification of dynamic similarity of

partitioned models. The strain response along lines of planned segmentation

were determined using the analytical program. This provided information

necessary to define the edge reactions of segmented structures.

As would be expected, the natural frequencies for the loaded shell

models were shifted to lower values as compared to the unloaded models. In

many cases the general patterns of both the response and impedance plots

were essentially unchanged in the frequency range of up to 500 Hz except for

the frequency shift. At higher frequency the attached mass appears to

suppress the response.

A comparison of experimental results with analytical prediction is

not made in Reference 45. Perhaps this comparison is made in Reference 27

which was not available at the time this summary prepared.

c. Shell Scale Model Design Procedure

To design shell scale models for dynamic investigation, it is impor-

tant to establish specific similitude relations. The similitude relations are

used to define dimensions, materials, mass, stiffness and other parameters

in model design. They are also used to interpret the model dynamic response

data and to predict the corresponding responses in the full scale structure.
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A number of scale modelswere designedandtested. In one case,
the scale dynamic responsedatawere comparedwith the full scale structure
data. In general, the procedure has beenfound satisfactory and shouldbe
useful in applying to other shell structures. Vibration tests on full scale
segmentedshell structure with mountedcomponentswere successfully con-
ductedby making use of the scale model data acquired previously. The
general scaling laws andconsiderations are described in SectionV of
Reference46.

d. Segmented Shell Dynamic Analyses, Design, and Test

The vibration analysis [ 48 ] of a flexibly supported shell segment

is a generalization of the finite difference technique applied to the rectangular

plate. A cross stiffened shell element with attached masses and flexible

supports were formulated into equilibrium equations. Grid points were

assumed which covered the shell segment and the neighboring areas. The
matrix formulation and numerical solution are illustrated in Reference 48.

A modified and improved finite difference computer program is given in

Section II of Reference 46. Design and test results of segmented shells are

given in Reference 48. In general, the analytical data generated by the

computer program compared favorably with the test data.

e. Conclusions and Recommendations

The feasibility of performing vibration tests on shell mounted com-

ponents using a segmented shell structure has been demonstrated. A design

procedure and related guidelines necessary to use the segmented shell test

approach for large structures was formulated by combining analytical

studies with scale model and full scale experimental investigations.

Experimental results indicate that the method of controlling structure

response amplitudes is dependent on the inherent damping in the segmented

specimen. For structures where sufficient friction and damping exist, no

additional damping devices are needed to control vibration amplitudes. For

structures where the inherent damping in the segmented piece is relatively
small, vibration amplitudes may be controlled by regulating the input vibra-

tion level. Where damping is small, damping devices may be installed at

the supporting points to control the response amplitudes. Also, when

segmenting a structure, the design and location of the flexible supports have

a significant effect on the dynamic responses of the structure. Therefore,

when considering vibration tests on large and expensive structures, it is

advisable to conduct a scale model investigation prior to final segment

selection and edge support design and fabrication.
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In the vibration test performed, mechanicalvibration inputs were

applied by attaching the exciter directly to the specimen. Inputs were con-

trolled by monitoring amplitude at selected locations. In certain tests it

may be desirable to mount the flexibly-supported specimen on a very rigid

fixture and apply vibration through this fixture. It is expected that the same

basic design criteria and techniques for the specimen are also applicable when

rigid fixtures are used.

The analytical study on the modal responses of the complete and

segmented shell supplied a guideline and gave insight to the problems involved.

The finite difference method possesses desirable features in dealing with

singly and doubly curved shell structures and proved applicable to investigating

the modal behavior of a segmented and flexibly-supported shell.

When selecting shells for segmented component qualification tests,

it is advisable to start with hardware where substantial experiences have been

accummulated from tests of unsegmented structures. By combining these

resources with the developed analytical techniques and scale model experi-

ments, considerable savings in time and costs may be realized in conducting

vibration tests on segmented shells of large structures.

F. Equivalent Systems

An equivalency between mechanical, electrical and acoustical systems

will be presented in this paragraph. Mechanical and acoustical systems

are often presented and studied by means of their equivalent electric circuits

partly for experimental reasons and partly for convenience. The equivalent

electrical system is obtained by comparing the equations of motion for the

mechanical and acoustical systems. Systems are analogous if their differen-

tial equations are mathematically the same. When the differential equations

are the same, the corresponding terms in each of the equations are analogous.

i. PRINCIPLES OF EQUIVALENCY

Equivalency between mechanical, electrical and acoustical systems

originate from two fundamental laws:

a. D'Alembert's principle for the mechanical and acoustical system.

b. Kirchoff's law for the electrical system.
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D'Alemberts principle states that the stm_of the forces applied to a
body are zero. Kirchoff_s laws state that the sum of all voltages aroundany
closed circuit is zero, andthe sum of the currents entering a point is equal
to the sum of the currents leaving the point. Thelatter statement is anal-
ogousto the statement that the charge doesnot collect at the point.

UsLngD'Alembert's principle the differential equation for the mechanical
and acoustical system is derived. For the mechanical system

ixt
m_ _- r ._ ,. 1 x = Fe (534)

m C
m

where

m

r

C
m

Fe ixt

= mass

= mechanical resistance

= mechanical compliance

= applied force.

For an acoustical system consisting of an enclosed container with

an opening subjected to an oscillating force,

1 Pe i xt
MX + rAX + C-'_ X =

(535)

w he re

,M

rA

CA

Pe i o_t

= ine rtance

= acoustical resistance

= acoustical capacitance

= external applied acoustical pressure.

For an electrical circuit consisting of an inductance, resistance and

capacitor in series, the equation of motion obtained by using Kirchoff's laws

L_ + re_l + _-E q = Zei_t
(536)

whe re
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L = inductance

r = electrical resistance
e

C E = electrical capacitance

q = charge

Ee iwt = voltage.

All of the above equations have a common form

1 He i o_t
SX + R X + _-X = (537)

The solution to this equation in terms of the first derivative of the dependent

variable is given by

He i¢ot

X = R+i (_S _C) (538)

The equation may be put in a different form by multiplying both numerator

and denominator by the complex conjugate of the denominator.

HR-i/caS 1 leiWt

1 z (539)

R2+( ¢°s _C)

or

= (L + iN) H (539a)

The impedance for the system is defined

-1

Z = (L + iN) Impedance

and

ZX = H . (540)
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Thus, the impedance equation represents a common parameter applicable to

mechanical, acoustical and electrical systems.

2. IMPEDANCE AND MOBILITY

The impedance is defined to be the complex ratio of voltage to current

for the electrical system, force to velocity for the mechanical system and

volume velocity to sound pressure for the acoustic system. The impedance

for a system is a characteristic quantity for the system and is independent

of other systems that may be connected to it. Therefore, the impedance

is a very useful quantity to describe a particular system.

Mobility is defined for the acoustic system to be the complex ratio of

sound pressure to volume velocity which is the reciprocal of the impedance.

For a mechanical system, the mobility is the complex ratio of the velocity to

the force. For an electrical system, the mobility is the complex ratio of the
current to the voltage and is called admittance.

Since new elements may be deleted or added without rewriting a

complete set of new equations, impedance and mobility are two important

quantities for a systems analysis.

Considering any combination of mechanical, acoustical, or electrical

systems, satisfying equation (540), the total impedance can be obtained by

direct addition or reciprocal addition. For a series connection the impedan-

ces are directly added, and for a parallel connection the reciprocals of the

impedances are added to obtain the reciprocal of the combination. If

mobility is used, the parallel connection is summed by direct addition, and

the reciprocal of the total mobility is obtained by adding the reciprocals of
each portion.

The full exploitation of the impedance/mobility approach in testing
demands very careful measurement. Significantprogress has been made in

developing experimental methods for measuring impedance.

3. GENERAL DISCUSSION OF EQUIVALENT SYSTEMS

In addition to the specific equivalent relationships through mechanical
impedance in equation (540), other equivalencies are used. All of these

equivalencies are, of course, related by the proper conversions.
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a. Electrical Analogies to Mechanical Systems

There are two electrical analogies for mechanical systems:

1. The voltage force or mass inductance.

2. The current force or mass capacitance.

The current-force analogy has the advantage that both the electrical circuit

and the mechanical circuit are of the same form. The following tabulation
from Reference 49 presents the analogous quantities between the electrical

system and mechanical system.

F

m

.Mechanical

System

D'Alembert's

p r inc iple

Degree
of freedom

Force applied

Force (Ib)nt

Electrical System

Voltage -force

Analogy

Kirchhoff's

Current -force

Analogy

Kirchhoff's

_lass

(Ib-sec2/in.) kg

voltage law

Loop

current law

Node

Displacement
(in.) m

Velocity
(in./sec) m/sec

C Damping

(ib-sec/in.) N/M

k Spring (Ib/in.) g/m

Coupling element

V

L

q

i

R

i/c

Switch closed

Voltage (volt)

Inductance

(henry)

Charge
(coulomb)

Loop current

(ampere)

Re s istance

(ohm)

i[ Capacitance

Elcm¢at common

to two loops

C

Switch closed

Current

(ampe re )

Capacitance

(farad)

4_ =fvdt

V

1/R

I/L

Node voltage
(volt)

Condudtance

(mho)

1/Inductance

Element

between nodes
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in using the voltage-force analogy, if the mechanical elements are in series,
the electrical elements are in parallel. If the mechanical elements are in

parallel, the electrical elements are in series.

For the current-force analogy, the mechanical elements are in series

when the electrical elements are in series and a similar scheme exists for

elements in parallel. In the current-force analogy, velocity across is anal-
ogous to voltage across and force through is analogous to current through.

b. Acoustical Circuits

Acoustical circuits are usually more difficult to represent pictorially
than mechanical or electrical circuits because the circuit elements are more

difficult to identify. One of the analogies between acoustic and electrical

systems is to choose pressure analogous to voltage and a volume velocity
analogous to current. This seems to be a reasonable choice since a volume

of fluid flows through the acoustic element and there exists a sound pressure
differential across the element.

c. Acoustic Mass

Acoustic mass is a quantity proportional to mass but has the dimensions

of km/m 4. It is associated with a specific mass of air accelerated by a net

force which acts to displace the gas without appreciably compressing it. The

important idea here is acceleration without compression. An acoustic mass

may be represented by a tube filled with gas. Using Newton's second law
for the mass,

dU (t)
P(t) = M dt (541)

where P(t) is the instantaneous pressure difference in Newton's/m 2 between

the ends of the mass undergoing acceleration, M is the acoustic mass in

km/m 4 of the gas undergoing acceleration and U(t) is the instantaneous

volume velocity of the gas in cubic meters per second across any cross-

sectional plane in the tube. The steady state value for P is

P = j o)iVIU (542)

where P and U are complex quantities in rms.
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d. Acoustic Compliance

Acoustic compliance is expressed in mS/N. Itis associated with a

volume of air that is compressed by a net force without an appreciable average

displacement of the center of gravity of air in the volume. This acoustic

element is represented by an enclosed volume of air V with an opening for

entrance of pressure variations. In equation form

I
f U(t) dtP(t) = _-

where C is the acoustical compliance.

(543)

e. Acoustical Resistance and Acoustical Responsiveness

An acoustic resistance is associated with the dissipative losses

occurring when there is a viscous movement of a quantity of gas through a
fine-mesh screen or through a small tube. The reciprocal of the acoustical

resistance is the acoustic responsiveness. The pressure drop across this

element is the acoustic responsiveness. The pressure drop across this

element is

1

P(t) = RAU(t) - rA U(t) (544)

where R A is the acoustical resistance and r A
is the acoustic responsiveness.

f. The Acoustical/Electrical Analogy

Acoustic transmission systems are not analogous to mechanical

systems in such a simple manner. Therefore, acoustical/electricalanalogies

will be discussed.

The two variables frequently used in the discussion of an acoustic

transmission system are the sound pressure P at the particular surface and

the volume V of gas through the surface due to acoustic pressure. The

acoustic impedance (defined on a particular surface) is the complex quotient

of P and V. Therefore,

Z = --P or V = p (545)
V Z
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which is similar to I = E/Z in electrical circuitry. However, if the acoustic
e

impedance Z were defined as the quotient of V and P
C

V
Z - or V = Z P (546)

c P c

which is similar to the electrical equation

E = IZ (547)
e

Therefore, the analogy between the acoustic and electrical circuit depends

on how the acoustic impedance is defined. The two analogies are really

impedance and mobility analogies. The difficulty that arises in the construction

of the acoustic circuit is whether the elements are in series or parallel. As

an example, suppose a number of transmission tubes terminate or originate

in a common junction point. This is similar to a number of electric lines

entering a common junction box which may be connected to either a series or

parallel configuration in the box. H Z is defined as P/¥ then the trans-
c

mission tubes appear to be in parallel since they experience the same sound
pressure. However, if the impedance is defined as V/P, then the tubes seem

to be in series for each has the same acoustic pressure again. One justifi-

cation for using the impedance as P/V, which looks like Z = E/I in electrical
e

terminology, is that the sum of the volume displacements to any junction is
zero. This is similar to Kirchoff's second law for the electromotive force

around a mesh. For the analogy,

V = PZ A --- E = IZe (547a)

A tube with an open end is represented by an open circuited line,while a tube

with a closed end is similar to a short circuited line. The analogy to choose

is difficult;the literature states that the two analogies are about equal in

useability.

G. Non-Linear Vibrations

Because of its complexity, non-linear effects in vibration are largely

ignored by practicing engineers; however, the picture is changing. As the

performance demands of space vehicles continually become more intense and
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as materials having non-linear properties are introduced, a better under-

standing of these phenomena are likely to become necessary. Thus, this

introduction to the subject is provided in the vibration manual. It is not the

intent of this paragraph to provide practical methods for solving non-linear

vibration problems, but to accomplish two objectives. First, the intent is

to provide information leading to an understanding of the phenomena so it can

be recognized intelligently and dealt with accordingly. Second, the introduction

provided here will hopefully lead to an expanded study of the subject by the

practicing engineers and eventually to a methodology of non-linear vibrations

that can be normally applied to space vehicle problems. With this in mind,

a separate bibliography on non-linear vibrations is provided in addition to the

list of references.

1. GENERAL

Linear equations of vibrations, defined in Paragraph A. 1. of this

section, arise when the motions can be assumed small so that forces, such

as the restoring force of a spring or damping, are linear in the displacement

or velocity. As long as the results of such equations agree favorably with

experiment, the equations are useful and have the advantage that new solutions

may be derived by the appropriate superposition of a number of known solu-

tions of the equations. When the amplitude of the driving force or the

amplitude of vibration becomes large_ and the results from the linear equations

no longer agree with experiment, then this new behavior must be analyzed by

non-linear equations.

Solutions to non-linear equations cannot be found with the generality

of the linear solutions. Before resorting to numerical integration, however,

it is profitable to investigate some of the properties of the solution graphically

and analytically. For a single defree of freedom, the rough sketching of a

trajectory starting with initial conditions in a velocity-displacement plane will

indicate the possibility ol periodic motion. For conservative systems, a first

integral may I_e found without too much difficulty leading to energy surfaces

whose singularities may z'eveal considerable information about the nature of

the solutions. Such methods of attacking non-linear problems may be

described as topolo_ca] or geometric.

In most mechanical vibration problems, non-linear phenomena occur

when the amplitudes become larger and the non-linear terms are associated

with certain physical parameters which are usually small. The procedure

of attacking such problems differs little from linear problems since this

class of non-linear problems may be solved by perturbation methods such as
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thoseof Poincare, Cyldenand Lindstedt, andKryloff and Bogoluiboff [50, 51]
in which the equations are reduced to a set of linear inhomogeneousdifferen-
tial equations. Another methodwhich is nearly equivalent, is the iteration
method in which the linearized solution is substituted into the non-linear
terms of the differential equationsyielding a set of inhomogeneouslinear
equations.

The concept of mechanical impedance, which is the ratio of driving
force to velocity expressedas a complex function of the frequency, does not
carry over directly into non-linear problems. Responsecurves, in which the
amplitude is plotted against frequency, and the trajectories as shownin the
phaseplaneplay a somewhatsimilar role in non-linear steadystate vibrations
as impedanceprovides in the linear case.

2. PHENOMENACAUSEDBY NON-LINEARITY

There are a number of phenomena which can be accounted for in no

other way than by the consideration of non-linearity. Some of these are

briefly outlined below and expanded in the subsequent paragraphs. It is often

found, for example, that the vibration frequency of a system depends upon

the amplitude of the vibration. It may be observed that a system driven at

a particular frequency may also vibrate at a lower frequency which is an
integral fraction of the driving frequency. This is referred to as subharmonic

response. A related phenomenon is the combination frequencies. A non-

linear system driven by two separate frequencies may exhibit not only frequen-

cies which are multiples of the two driving frequencies but also frequencies

which are the sum and difference of these frequencies. Another is the jump

phenomenon. This can only be explained by the presence of damping with the

non-linearity of a vibrating system. Such a non-linear system, driven at

constant amplitude but with the frequency varying gradually over a given

range, may suddenly jump to a different mode of vibration with a higher or

lower amplitude. Reversing the frequency change will not necessarily cause

the system to pass through the same mode of vibration but will produce a

jump at a different frequency. For this reason, the jump phenomenon is

also called "hysteresis resonance."

3. THE NON-LINEAR RESTORING FORCE

These phenomena and some of the methods of attacking non-linear

equations by considering the differential equation for a mass supported by

a spring with a non-linear restoring force are illustrated. For a single degree

of freedom, the differential equation is given by
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md2x/dt -_ + c0dx/dt + klx + k2x3 = 0

or

d2x/dt 2 + cdx/dt + W o2X + kk 3 = 0 (5470)

where x is the displacement, k 1 and k 2 the spring constants, c the damping

constant, m the mass of the vibrating object, and t the time. The quantity

w0 is the natural frequency of the linear system, and k is a constant that
introduces the effect of a non-linear restoring force. The symbol k, as used

here, should not be confused with the k used in previous paragraphs for the

restoring force in the linear case.

If k > 0, then the spring is hard, while for k < 0, the spring is soft.

The value k = 0 is the linear spring. If k is assumed small, then the equa-

tions may be described as quasi-linear, since the non-linear solution reduces,

for vanishingly small values of k, to a solution of the linear equation.

4. ENERGY CURVES FOR CONSERVATIVE SYSTEMS (PHASE-PLANE)

For a conservative system where there is no damping, equation (547b)

with c = 0 can be integrated once after multiplying the equation through by

dx/dt. This leads to

(dx/dt)2/2 + w02x2/2 + kx4/4 = E (547c)

where E is the total energy of the system. If dx/dt = v, then equation (544)

becomes

¢o02x2 + kx4/2 + v 2 - 2E = 0 t547d)

This can be represented by a curve in the x, v plane for each value of E and

fixed k or by a surface in the x, v, E space. When k > 0, all curves of constant

E form a non-intersecting family of closed curves around the origin as seen

in Figure 118. For the linear spring, these curves are ellipses. However,
when k < 0, then the curves of constant E form closed curves only in the

finite region containing the origin as seen in Figure 119. The origin in both

Figures 118 and 119 is a singular point and is related to the minimum point

on the energy surface in the x, v, E space. It corresponds to the minimum

energy and is the greatest lower bound of E for which any motion of the sys-

tem exists. This point is called a vortex point since a family of non-inter-

secting curves encircle it like the streamlines in a free fluid vortex.
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Figure 118.

#t

Lines of constant energy in the phase plane

for the hard spring, K > 0.

V

D

X _

Figure 119. Lines of constant energy in the phase plane

for the soft spring, K < 0.
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The maximum displacement occurs when the velocity v vanishes.

Solving for this value of x yields

,2:[m 547e)

Note that maximum displacements occur for all values of E and c0 for the hard

spring, k > O, for which all the trajectories are closed curves. However, for

the soft spring, k < O, the values of E and k must be restricted to

¢o02 - -4Ek (547f)

The equality with v = 0 desigTmtes the saddle points on the surface in the x, v,

E plane of equation (544a). The curves of constant E passing through them

in Figure 119 divide the plane into regions of periodic and non-periodic

motion. For this reason, the curve is called a separatrix.

Because of the symmetry in _ and x, the time for a period in the

oscillation is given by solving the energs: equation for dv/dt and integrating

with respect to x from 0 to Xm, or

X

m dx
fT = 4 _]2 E - ¢%" + kxZ/2 xZ/2 (547g)

0

This may be easily expressed in terms of an elliptic integral by setting

x= x cos 0. This leads to
m

k b"
2E - (_02 + k,x2/2)x 2 =_" (Xm"-x _) ( + x 2)

,)

k (x a -b:') -%"
2 m

_/2 dO

T = 4 f (547h)
0 _/kx _' + 2OOoz 'kx Zsin aO

m m

Note that when k < 0 the period increases with amplitude of vibration while for

k > 0, the period decreases. The motion along the separatrix starting from

x = 0 to the saddle point is vanishingly slow from the integrand it follows that

the integral diverges when x 2 is set equal to -w0/k.
m
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When damping occurs no simple energy relation exists. For specific

initial conditions, the x, v plane may be sketched by the method of isoclines

or by numerical integration. These trajectories may spiral toward the origin

indicating that the motion damps out eventually. The method of trajectories

in the phase plane, although not furnishing a complete solution, gives much

qualitative information on the nature of the solution. For motion with a

single degree of freedom, the phase plane method is practical but it becomes

more complicated when applied to systems having more degrees of freedom.

These will not be treated here but similar methods for higher degrees of

freedom were developed by Ku [ 52 ].

5. PHASE PLANE -- LIMIT CYCLE

The phase plane method was applied by Van der Pol on an equation

with non-linear damping in the form

md2x/dt 2 + k[(dx/dt)2-1]dx/dt = 0 (549)

In this equation true damping occurs for dx/dt > 1 and energy is supplied to

the motion when the velocity is small. Thus, when motion occurs at small

velocity the negative damping provides energy to the motion until the velocity
increases to a point where the motion becomes highly damped and slows

down rapidly. This type of oscillatory motion is called relaxation oscillation.

Plotting the trajectories in the phase plane, Van der Pol discovered that when

the motion was started at any point in the plane, the trajectory eventually

coincided with a definite closed curve called a "limit cycle." For such a

non-linear motion the eventual motion does not depend upon the initial condi-

tion of the problem but is determined by the limit cycle curve in the phase

plane. If any trajectory starting from any point in the plane spirals to the
limit cycle as the time t increases, then the motion is stable. A mechanical

example of limit cycle oscillation is the simple escapement mechanism in a

spring-wound clock or watch.

6. LIENARD PLANE

Another geometric method uses what is described as the Lienard

plane. Consider the equation

d2x/dt 2 + f(x)dx/dt + g(x) = 0 (550)

and introduce the function

478



x

F(x) = J" f(x)dx
0

(551J

y = dx/dt - Fix) (552)

In terms of x and v the differential equation may be expressed in the following

form:

dy/dx = g(xJ/[y-F!x)] (553)

Levinson and Smith [53 ] showed that there is only one closed trajectory

when the ftmctions F (x) and gix) have the following properties:

a. All ftmctions are continuous anti F(x) and g(x) are ocld in x

where g(x) has the same sign as x.

b. F(x) has a sin_e positive zero x0, and for x > x 0 it increases

monotonically and is positive.

c. F(x/ goes to infinity with x.

, ITEILa, TION 51ETHOD -- RESPONSE CURVES

To illustrate the importance of damping in hysteresis resonance, the

periodic solution of a driven non-lh_ear spring and mass without damping is

fotmd. Usually the frequency of the driving force is known in advance of the

solution but for this problem it is convenient to determine it later. According-

ly, equation t543_ is written in the form

.I

..'-x = _':" ":0-)x kx 3 + F cos _:t 1554_

Let the initial approximation be xt, = A cos a.,t. Then substituting tMs solution

into the left right-hand side leads to the following equation for the second

app roximat ion x t:

[( ) ]:'_l - "-"'xi - ,z: - ..',_- A 3I_A:" I,:Az
4 F cos _'t o--_-- cos ,l..t

t555)

If x 1 is to I_, periodic, then the coefficient of cos _.'t must vanish since this

term ha the integration yields the sectdar term t cos _'t. Hence,
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3kA" F (556)

This relation gives the frequency of the driving force in terms of the amplitude

of vibration and the amplitude of the driving force. Integrating equation (555)

yields

(557)
x I = A cos_t + _ cos 3wt .

Response curves for the vibrations are obtained by plotting the ampli-

tude of the vibration A versus frequency w for constant values of the driving

force. This is shown in Figure 120 for the hard spring and in Figure 121 for

the soft spring. Note that the phase of the amplitude changes by v when the

frequency changes from values below to values above the natural frequency of

the linear system.

[A]
F-O

K_*O

Figure 120. Response curves for the hard spring.

8. ITERATION METHOD WITH DAMPING-JUMP PHENOMENON

The effects of damping on the response curve for the non-linear spring

will be considered next. There will be a change in phase between the driving
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[A]

A=,O

Figure 121.

Wo W

K.,O

Response curves for the soft spring.

force and the response of the system due to the influence of viscous damping.

The phase of the response was chosen leaving the phase of the driving force

to be determined later. Accordingly, the equation becomes

_ + ck + (w_ _ kx :_) -Hcoswt-G sin wt (558)

Let x = A cos wt be the response. Substituting the approximation into the

equation, using the trigonometric identity, cos 3x = 4 cos:_x - 3 cos x, and

equating coefficients of sin wt and cos wt on the right and leit sides of tile

equation yields

= H

( 559}

From this it can be seen that with damping, no external force implies no

motion since A -- 0 from H- G :- 0. The magnitude ofthedriving force

is F = G 2 + H 2, and the equation for the response curves becomes

3kA:_ ] '2== A +-¢-- {56o)
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The amplitude A for fixed values of F is plotted in Figure 122. .Note that each

curve of constant F has two vertical tangents. If for a given amplitude of the

driving Iota.. , the frequency is decreased, the amplitude will vary continuously

until the first vertical tangent is reached at which the amplitude will jump to

the higher value on the same curve (Fig. 123). The amplitude will yam con-

tinuously for lower values of frequency. However, when the frequency is

increased again retracing the same curve, the amplitude will yam contim_oush

until the first vertical tangent is reached at which the amplitude will drop

suddenly to the value on the lower part of the curve as shown in Fig_re 123.

Since the response of the system is not the same in the two directions of fre-

quency variation, this phenomenon is often referred as hysteresis resonance.

, SUBHARMONIC RESPONSE

h_ the iteration procedure for the equation without damping the additional

iterations yield higher harmonics in the solution. Because of the presence of

these higher harmonics, not found in the linear solution, it is possible to have

a response of the system at a frequency which is a fraction of the driving fre-

quency. This phenomenon is called subharmonic response. Since the frequency

at which this phenomenon occurs is not kmown, then the variable 0 = _,t is

introduced. The differential equation then becomes

_2x" -_ _x + kx_ = Fcos0 . (561)

Consider a solution in the form

o_
2n- 1

x = _ an.COS---_ 0 (562)
n= ]

Substitution of this solution into the differential equation using the trigonometric
identities

cos :_ 0/3 = 3/4 cosO/3 + 1/4 cosO

cos :_O/3cosO = 1/4 cos 0/3 + 1/2 cosO

cos O/3cos 20 = 1/2 cos 0/3+ ...

cos_O = 3/4 cosO +...,

( G3)

482



F3
F2

m

W o (,_

K>O

IAI

3
1-_,.-

_No _J

K>O

Figure 122. Response curves for the non-linear spring with damping
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Figure 123. Jump phenomenon or hysteresis resonance for the

non-linear spring with damping.

and equating the coefficients of each cos(2n-1) 0/3 equal to zero yields for the

first two terms

at(w _ _ w2/a)+ (3k/4) (a:} + a_ + a_a 2 + 2a,a_) =

a2(¢00_ 2)+ (k/4) (a_+ 6a_a 2+ 3a _) = F (a64)
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first,

As a guide for exploring these equations the linear case is considered

k = 0, yielding

a2 =

from the second equation and either

a 1 = 0

or

w=3w 0

from the first. If w = 3w 0, then a I may be arbitrarily prescribed and is the

natural frequency term of the system added to the driving frequency term.

Hence, for k ¢ 0, a 1 and F shot,'d be fixed but a 2 and w are functions of a 1.

Solving the first of the two expressions for w 2 and the second for the a 2

not multiplied by k, after eliminating w2 by the first equation, yields

w2 = 9wo2 + (27k/4)(a_ + a,a 2 + a_/a, + 2a_)

at = -F/Sw_ + (k/32 2) (a_- 21a_a 2 - 27a_a I- 51a_)

(565)

The linear solution as a first approximation to the above equation is now

considered. The linear solution is followed by an iteration to find the next

approximation of order k. Settingw = 3w 0 and a 2 = -F/Boo02 = a in the pre-

ceding two equations leads to

27k 2a 29 °2 + + aa, ÷ )

K

a 2 = a + _ (a?- 21a[a- 27a2a,- 51a :_)

(566)

(567)
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Equation (566) represents an ellipse in the w, a 1 plane when k > 0 and a hyper-

bola fork< 0. This relation also has a maximum at a 1 = -a/2whenk< 0and

a minimum for k > 0. For a I = -a/2, from equation (566),

w 2 = 9(w_ + 21k a2/16) . (568)

Therefore, for k < 0 the subharmonic response must have

u) -< 3_ w °2 + 21ka2/16 (569)

and for k > 0

J_g + (570)o_ -> 3 211_2/16

For this particular problem, subharmonic resonance at a frequency three times

the natural frequency of the linear system does not exist.

Subharmonic response also occurs for the non-linear spring with damp-

ing. Details are found in Stoker [ 54 ]. The damping constant must be small

of the order of k and must satisfy the inequality

3 Ika I F[
c < _ ( 57D

32 w0

The foregoing discussion is intended only to suggest in a limited way the

basic types of analysis which might be applied to find the solution on non-linear

differential equations associated with vibrations. Considerable literature is

available where these concepts are presented in greater detail. One of the

earliest books written on the subject of non-linear equations is Andro,mv and

Chaikin [ 50 ]. Two books by Minorsky [ 55, 56 ] summarize and extend the

classical methods of Poincare, Rayleigh and others. Stoker [ 54] has treated

non-linear vibrations with one degree of freedom. A book especially devoted to

the solution of practical problems is Reference 52. Much advanced research

in the understanding of non-linear vibrations is available in the works of the
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researchers at RIAS (a division of The Martin Company) and published in the
five volumes [ 51 ]. An extensive bibliography of papers dealing with specific

problems is also provided. The classical papers on non-linear analysis such

as those of Poincare, Rayleigh, and Van der Pol are contained in the biblio-

graphy.

H. Supporting Mathematics

Some of the supporting mathematics are presented separately in this

paragraph. The contents of this paragraph are addressed more to a general

treatment of the subject rather than the specific applications contained in pre-
ceding paragraphs of this section.

1. INFINITE SERIES

A finite series is of the form

X1+X2+X3+ ... + X n

where each term is formed by some definite rule and x n is a specific termina-

tion. For cases where this generating rule is supposed to apply over and over
indefinitely, the number of terms is unlimited. This unlimited set of terms

forms an infinite series which may be written as

yl+y2+y3+.., yn +...

where Yn = an arbitrary termination. Using a summation convention, the
infinite series has the form

¢0

s = Yi • (572)
i= 1

If a limit exists the sum of an infinite series is defined as the limit of the sum

of a finite number of terms, as the number of terms approaches infinity. This
is denoted by

Sum = Limit Sn

n -._ ¢_
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If this limit exists, the series is said to converge; if the limit does not exist,

the series diverges. Methods to test for convergency or divergency are thor-

oughly discussed in the literature.

One important application of the infinite series arises in the solution of

differential equations. The application of the infinite series to the solution of

differential equations gives rise to the invention of transcendental functions such

as circular functions, hyperbolic functions, Bessel functions, etc.

The general Taylor series given below is used to expand or represent
functions that are continuous and have all continuous derivatives. The Taylor

series is given by

® (x-a)n f(a) (_7_)y -- f(×)= f(a)÷ _ nl
n=l

where fn(a) is the nth derivative of f(x) evaluated at the point a. For the expan-

sion about the arbitrary point (a) to be valid, f(z) and fn(z) have to be contin-

uous. If a is zero (expansion about the origin), then the Taylor series degen-

erates into a Maclaurin series given by

® nd(o)
y = f(x)-- f(o)+ _ xni . (_Ta_)

n=l

Note that in both of these series, n is an integer so that x always appears to

some "integer" power. However, in some differential equations, such as

Bessel' s equation, x may appear as xP/q where q is not one. To take care of

this possibility the functional form of the solution is changed from a Taylor

series [ 57 ] by assuming that

[ - o ]C (x-a)n [Jl(a) . (5_4)-- x f_a)÷Y
rl=l

This allows for terms such as f(x)= (x) 3/4, etc. This last equation is the

form used in the solution of most differential equations and is due to Frobenius

[36]. If the solution is in the form of a pure Taylor series, then c = 0. Thus,
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an infiniteseries may be used to approximate a general function. This idea is

especially advantageous in the solutionof differentialequations when the exact

solution is not readily obtainable by standard methods.

Infiniteseries theory is also applied to expressions that are exact solu-

tions. Ifan exact solution is known, the expression can be stated in terms of

an infiniteseries. This operation is often performed to simplify an exact

expression by isolatingand then eliminating second order effects. An excellent

example of this applicationis the reasoning leading to equation (456).

2. LAPLACE TRANSFORMS

Although the Laplace transform exists for any function possessing the

properties listedbelow, the vibrationengineer normally applies the theory to

functions of time. Therefore, the discussion in thisparagraph is presented

for functions of time.

The Laplace transform of a function f(t)exists only if f(t) is piecewise

continuous in every finite interval in the region t >- 0 and if the function is of

exponential order,.

a. Piecewise Continuous - A function f(t) is piecewise continuous in the

interval 0 - t - T I ifthe interval can be divided intoa finitenumber of sub-

intervals, in each of which f(t)is continuous, and iff(t)approaches a finite

limit as tapproaches either end point of the interval.

b, Exponential Order - A function f(t) is of exponential order if there
exists some real number a0 such that lim fit) e -at = 0 where a > c_0.

The Laplace transformation of fit)is denoted by L [fit)]= Fis) and is

defined by the foUowing integral

F(s)=-I -ste fit) dt . (575)
O

The integral transforms a t domain to an s domain and has wide application in

the solutionof differentialequations. The inverse transform of F(s) is equal

to fit)and is denoted by

f(t) = -1 {F(s)} • (57e)
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Thus, a correspondenceis established betweena function in the time domain
and its transform in the s domain. This correspondenceis used by engineers
to solve differential equations in addition to the direct transformation tool such
as the application in Paragraph C. 3. of this section.

Before proceeding with the solution to a differential equation by the
Laplace transform, a few brief commentson the Fourier transform are in order.
The Fourier transform and the Laplace transform are similar but not generally
equivalent. In the Laplace transform the multiplier operator s is, in general,
a complex number with real and imaginary parts. The multiplier number in the
Fourier transform contains only the imaginary part. Therefore, the Laplace
transform contains a built-in convergencefactor.

For the application of Laplace transforms to the solution of a linear

differential equation, consider the following equation

mY + b_ + cx = u(t) .

Consider the operator (d/dt} and denote it by D. Then

(577)

¢v -st

L{Df(t)) = foe Df(t) dt . ( 57 8)

This integral can be evaluated by successive integrating by parts to yield

n n-1 n-2
L(D nf(t)} = s F(s) - s f(o) - s Dr(o) +

- sD n-2 F(o) - D n-1 (f(o)

(579)

Substituting in the Laplace transform for each term yields

(ms 2+bs+c) F(s) = 1
S

(500)

and

111]F(s) = s ms 2+bs+c " (581)
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The solution to the differentialequation isobtained from equation (581) by

means of partial fractions and taking the inverse Laplace transform of the por-

tions that are found in tables.

For some application of the Laplace transform to the solution of a

differential equation, the resulting algebraic solution contains the product of two

functions. In order to obtain the inverse transform of the product of two func-

tions, the convolution integral is used.

Consider the functions f(x) andf(x-t) where f(x-t) represents atranslation

of the functionf(x)tunits in the positive direction. The followingresultexists and is

proven in Reference 58:

-st -st
L[f(x-t)] = e [f(x)] = e F(s) . (582)

Now consider the product of two Laplace transformations. Define

L [f(t)] = F(s)

L[g(x)] = O(s)

and

F(s) G(s) : fo f(t) f: e -sx f(x-t) dx dt

Rearranging terms yields

[o ]F(s) G(s) = fo e-sx f f(t) f(x-t) dt dx . (583)

The term in brackets looks much like the convolution integraldefined as

X

f(t)* g(t) = fo f(t) g(t) dt (584)
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where g(t) here is f(x-t). Therefore the product of F(s) and G(s) is given by

f -SXF(s) G(s) = e [f(t) * g(t)] dx

O

or

F(s) G(s) = L[f(t) * g(t)] (585)

Equation (585) states that the Laplace transformation of the convolution of the

two functions is equal to the product of the Laplace transforms of the functions.

The convolution integral is usually expressed in terms of the inverse Laplace

transform gi_ _'n below

-1
L [F(s) G(s)] = f(t) * g(t) (586)

In this paragraph it was seen that the Laplace transformation converts

a function of time f(t) into the s-domain by means of the integral equation.

It was also shown how the Laplace transform may be used to solve a differential

equation by converting it into an algebraic equation resulting in an easier

solution. Finally, it was shown that the convolution integral is equivalent to

an inverse Laplace transformation of two functions defined in the s-domain.

3. VE CTORS

A vector is an abstract quantity that has a magnitude and a direction

associated with it. Suppose an n-dimensional vector space exists with a set

of basis vectors , r2, r3, ... . A set of vectors such as (ri} is called

a basis for a vector space if:

a. These vectors are in the vector space and form a linearly

independent set (linearly independent means that one basis vector is not a

linear combination of the other (n-l) basis vectors).

b. Every vector in the space is a linear combination of these basis

vectors.

In the special three dimensional case, the basis vectors are denoted by

j, and k where i, j, k are unit vectors along the X, Y, and Z axis,

lp
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respectively. Any vector in the n-dimensional space may thus be written as

V = Xlr 1 + X2r 2 + X3r 3 + ... + X r
n n

n

V = _ X.V.r.i= I I I

For the three dimensional case, a vector P would be written as

(587)

P = Xi + Yj + Zk . (588)

Suppose the vector V is referred to a different set of basis vectors {_ii}, then

V is written as

V = Ylsl + Y2s2 + Y3s3 + ... + y s
n n

n

V = Yi s. 89)
I

i=l

A vector is usually represented by a set of scalar functions which are the

components of the vector. Thus, in the first reference frame utilizing the set

of basic vectors (ri} , V could be represented as

-- .

Xl

V-- X 2 (590)

X
n

Written in this form, V is called a column vector. In the second reference

frame using the set of basic vectors {_}, _" may be represented by

492



V_

m •

Y1

Yz (591)

jY
. n

The following problem arises. One set of components {Xi) is given and itis

desired to obtain the other set of components {Yi}. This is interpreted in one

sense as changing coordinate systems. Some type of operator isdefined to

change the set {Xi} intothe set <Yi}. Written in an operator form, the trans-

formation is given by

T (Xi} = (Yi} . (592)

This equation may be thought of as representing a transformation of the vector

V from one coordinate system to another and isaccomplished by the trans-

formation of itscoordinates. Therefore, the concept of a vector or any

abstract object is important from the standpoint of how itscomponents change

by a transformation from one coordinate system to another.

A quantity that is a function of several variables is called a functional.

The vector V in the preceding paragraphs is a function of several quantities

X i,X 2, X 3, ... X n in the firstcoordinate system and is a functional. Thus,

the transformation of the vector V is a transformation of one functionalspace

onto another functionalspace•

a. Basic Operations

The operations performed with vectors willbe described in this

paragraph. The additionand subtraction of vectors poses no problem. Two

vectors V i and V 2 may be added to give a new vector V 3 ifV i and V 2 are

defined on the same vector space• That is

V I 4- V 2 = V 3 . (593)
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-=_ ===_

V 1 = a 1 r I + a 2 r 2 + .., + a r
n n

and

V 2 = bi rl + b 2 r2 +
-=_

b r
n n

then

V 3 = (al + b|)r I + (a2 + ,,. J#- (a +b)r
n n n

(594)

n
-_ -=_

Vs = _1 (al + bl) r.i-- 1

Two types of vector multiplication that will be discussed are the scalar or

inner product and the vector or cross product.

The scalar product of two vectors ts a scalar quantity that is equal to

the product of the magnitude of the two vectors times the cosine of the angle

between the two vectors.

.....V I V 2 = V 2 . V i = [Vii cos 0 (595)

where 0 is the angle between the vectors. An alternate form is usually seen.

Assume that V I and V 2 have the form that V i and V2 have in the paragraph on

the addition of vectors. Then, by definition,

V1 • V2 -- albl + a2 b 2 + a 3b a + ... + a b (596)
n :1

n

V i V 2 = _ a.b.
1 1

i=l



A common exampte of the use of the scalar product is in the calctdation of the

work expendecl by a force F acting over a displacement dx. Then

The vector product is more difficult to define because the vector

product is also a vector; that is

Note that the symbols . and x are not interchangeable invector termtnotogo-.

Also, the operation is not cummutative; i.e., V x V #V x V . Only the
m n n m

magnitude of the vector obtained by the cross product of two vectors V and
m

V is given by
n

V x V = [V ' !V i sinO (599_
m n m n

where 9 is the angle between the vectors. The direction of the vector product

is conserved by using a determinant form to calculate the cross product.
The determinant of a three dimensional case is

AxB

1

= A
X

B
X

j k
A A

y z
B B

y z

(6O0)

This is the most useable form, _nerally. From this form it is seen that

A xB = (B xA).

Three additional operation vectors are the gradient, divergence, and

curt. These operations are defined in terms of the vector differential operator

"del" given by

-- a --" a -- a
V = t -- + j -- + k -- (601)

ax by. az

for a three dimensional system using an x - 5" - z coordinate system.
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Consider some scalar function R. The gradient is defined to be

--* aR "-* aR --- 81:{
VR = i -- + j -- + k --

ax 8y 8z
(602)

The gradient is the sum of the rates of change of the scalar functions in the

respective directions; that is, ar/Sx gives the rate of change of R in the x

direction, etc.

The divergence is a scalar quantity representing the rate of change of

a vector field. Consider a vector field _. Then the divergence is given by

aS aS 8S
mV. S - x +_.._ + z

ax _ _z
(603)

The curl of the vector field is sometimes described as being the rate

of "Swirl" of the vector field at a particular point. In a determinant form,

the curl is given by

Curl S = V x S

i j k
8 a 8

8x 8y 8z

S S S
x y z

(604)

where V x S is the vector product and S x V is not defined.

4. MATRICES

In ordinary arithmetic, single numbers along with the operations of

addition, etc., are considered. In more sophisticated mathematics, collect-

ions or arrays of numbers or functions are considered. The collections or

arrays of numbers or functions are considered. The collections or arrays

may be simple or complex and the ordering of the terms in the collection may

not be important as in the representation of a vector by its components. The

arrays have meaning only after a rule is determined to combine the array

with other arrays.

It is from the idea of a collection alongwith the combining laws for

collections that determinants and matrices are formulated. A determinant is

always a square array of quantities and has a particular value. The rule for
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determining itsvalue is given in Reference 57• A matrix is also an array of

quantitiesbut the array does not have to be square. Also, the matrix may

not have a specific value as the determinant does. Therefore, itis seen that

although a matrix and determinant are both arrays of quantities,they do not

have the same meaning.

A matrix is, in general, a mxn array of quantities aij , called elements,

arranged in m rows and n columns as given below

M

all a12 ... aln

a21 a22 -.. a2n

aml am2 ... aran

Smaller matrices may be formed from any matrix by striking
out some of the rows and columns. If the smaller matrices are square then

their determinants are called determinants of the matrix. If a matrix M

contains at least one determinant of r rows that is not zero and all determinants

of M with order greater than r are zero or nonexistent, then the matrix M

is said to be of rank r. The number of rows and columns making up the matrix

is called the order. Thus, a matrix having two rows and three columns would

have the order stated two by three. A row matrix or row vector is a matrix

consisting of only one row. Similarly, a matrix consisting of a single column
is called a column matrix or column vector•

A matrix is said to be singular if the determinant of the matrix is zero

or does not exist• Thus, if m ¢ n, the matrix is singular since the determinant

does not exist for an array that is not square.

a. Addition and Subtraction

Two matrices can be added if they are of the same order. M_trices

A and B can be added to obtain the matrix C by adding the respective elements

of A and B to obtain the corresponding elements of C

c = A + B (605)
(mxn) (mxn) (mxn)
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where each element of C is

cij = aij + bij . (606)

Since subtraction is a special case of addition, a matrix D can be obtained by

subtracting B from A,

D = A - B (607)

(mxn) {mxn) (mxn)

where each element of D is

dij = aij - bij . (S08)

It follows that

bo

A +B= B +A

(A + B) + C = A + (B + C) .

Multiplication

The product of matrices is more difficult than addition since the

matrix can represent a transformation. Multll_ioation can be defined as the

termwise product of the rows of the first matrix times the colmnns of the

second matrix. This imposes the restriction that if AB = C, then B must have

the same number of rows as A has columns. In general terms, the matrix C

resulting from the product of two matrices A and B has its elements determined

from this expression;

n

cij = k_1 aik bki "
(6o0)

The product of two matrices A and B is not, in general, commutative.

AB @BA .

In fact, unless both A and B are square and of the same order one of the two

products AB or BA is not defined. "
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In practical structural analysis, the order of matrices encountered

becomes quite large and multiplication of these large order matrices becomes

a problem in itself. Various reduction techniques and shortcuts are available

to circumvent this problem. Some of these methods are discussed in References

57, 59, 60, and 61.

c. General Operation Definitions

In the theory of matrices there are several operational terms essential

to understanding the manipulation techniques. The more commonly used
terms will be discussed here.

1. Transpose - The transpose of a matrix A, denoted as A T, is the

matrix resulting from the interchange of the rows and columns of A, i.e.,

a.. becomes a... The transpose may be used to test the symmetry of the
tj jl

matrix since a matrix is symmetric if a.. = a.. or A = A T.
tj ]_

2. Scalar Matrix = A scalar matrix is a diagonal matrix with the

diagonal elements as a single scalar n; i.e.,

S = O n 0 = n

o o n

A unity or identitymatrix, I, isa special scalar matrix with the diagonal

element equal to one.

3. Inverse - The inverse of a matrix A iS denoted A and is defined

by this relation

A-IA = AA -1 = I (610)

-I
The elements of the inverse matrix A can be found by any of several methods

presented in References 57 and 59. The inverse can be found for any matrix

that is nonsingular. This property is especially useful for linear transforma-

tions.

4. Orthogonality - For a transformation to be orthogorLal, the vector
that is transformed must have the same length in the new reference frame as
in the old reference frame. This condition is satisfied if
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A T = A -I

-I
Thus, in an orthogonal transformation, the inverse matrix A

transpose A T of the matrix A.

is equal to the

d. Reduction Techniques

When the number of variables in a matrix becomes large, the solution

to the system of equations requires special techniques. Efficient methods

depend on reducing the matrix to an equivalent system in which the matrix

is sufficiently simple to solve without a great deal of effort. A system of

equations can be written as

A x = f (611)

where

A = (aij),x = {Xi},f = {fi}
(611)

If the matrix A is nonsingular

-t (612)x=A f

Now the determination of the unknowns, X:, is contingent of developing the

inverse matrix, A -I. This is a major problem in numerical analysis and can

be approached several ways• One such method is the Gauss reduction method

discussed inReference 59. Other methods such as orthogonalization, diagona-

lizationand variations on the Gauss technique; i.e., Crout and Gauss-Jordan

are discussed in References 57, 59, 61, and 62.

The Gauss reduction method reduces the system of equation (611)

to an equivalent form

B x = d (613)

where

50O

1 b12 b13 ... bin

o 1 b23 ... b2n

o o o . . . i

(614)



and all elements below the main diagonal are zero. It can be seen that the

solution for the values of x are easily found from equation (614).

e. E i_envalues

An eigenvalue equation is of the form He n = En_ n where E is then

eigenvalue, Ca is the eigenfunction, and H is the operator. If H is the

Hamiltonian operator as used in mechanics, the E is the energy. A set of
n

eigenfunctions is needed to describe a system. The eigenvalue equation says,
th th

"operate on the n eigenfunction with H and the n eigenvalue will be

generated. "

It was seen in Paragraph 3. of this subsection that a transformation of

a vector from one coordinate system to another was performed by transform-

ing the components. Thus, there exists the transformation

t n

Xi = _ aij; Xj.(i, j, = 1, 2, ..., n) (615)
j=l

where the set {X'} represents the components of the vector referenced to a

different coordinate system than the set {Xi}. The above vector transformation
may be expressed in matrix form as

X' = A X (615a)

If the determinant of A is not zero and is defined (A is nonsingular), the

inverse transformation is given by

A -i X' = X (616)

The problem reduces to the followin_ question. Is it possible to find another
matrix C such that the matrix CAC- has the diagonal form

-1
CAC

1

_.1 0 . . o [

0 A 2 . . . ]
o . Xn
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This transformation is called a similarity transformation. This means that

relative to some suitable coordinate system the so-called deformation of

space characterized by equation (615a) assumes the form

I ! T

fll = _'1 ill, f12 = _.2 f12, • "', fin = kn fin

where the (fl'} are components of X"_ and {fl) are the components of X in the

denoted suitab,_ coordinate system. The diagonal form remains

-1
8 = CAC (617)

.I
A matrix S is defined such that S - C Then equation (617) becomes

e = S -I AS (618)

-I
Using the relation SS = I, equation (618) becomes

SO = AS . (619)

The matrix equation (619) is equivalent to the system of linear equations

given below

aij Sjk = Sikkk; (i, j, k = i, 2, ..., n) (620)

(No sum on k but j is summed). Equation (620) is usually written in the

equivalent form

(aij - 5ij X k) Sjk = 0

(k is not summed. ) For this system of equations to have a non-trivial

solution (Sjk ¢ O) the determinant of the other term has to be zero; that is,

}aij - 6ij Xk I = 0 (621)

Writing the determinant in a long form yields
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all-k a12 • • • aln

a21 a22-k • . . a2n

anl ........... a -A

= 0

In the diagonalization of the matrix A, equation (619), a transformation of

both _'1 and X" was made by means of the similarity transformation S -I AS.

The purpose of the transformation was to get the eigenvalues along the diagonal

of the matrix. If the roots )_l, _2, k3 ..... kk are all distinct it can be proven

that the matrix C will be nonsingular. If the roots of k k are not distinct it
-I

may not be possible to reduce A by the similitude transformation S AS to

the diagonal form since S may be singular. An important exception occurs

when A is a real and symmetric matrix. Then a matrix S may be found to

convert S -1 AS to a diagonal form even though the roots k k are not distinct.

The quantities Sik that appear in equation (620) are the components

of the eigenvectors obtained by transforming X and X by means of the
similitude transformation.

5. ORTHOGONALITY PRINCIPLE

Two vectors A and B are said to be orthogonal if their dot product

is zero, that is, if

3

A . B = 0 = A B +A B +A B = _ A.B.x x y y z z =1 l 1
(622)

Similarly, two vectors in an N dimension space having components A i, B.
(i = 1, 2 ..... N) are said to be orthogonal if t

n

A.B.i= I 1

= 0 (623)
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Next, imagine a vector space of an infinite number of dimensions, in

which A. and B. become continuously distributed and everywhere dense The
1 1 °

index i is no longer a denumerable index but is a continuous variable. There-

fore, the scalar product A. B. turns into f A(X) B(X) dx. If this integral is
1 1

zero, then the functions A and B are orthogonal. The above integral is

meaningless as far as a scalar product is concerned unless a specific range

of integration is considered. Thus, the principle of orthogonality for real
functions is given by

f Am(X) A (X) dx = a2 'n 6mn (624)
R

whe re

6 _ Oifm_n
mn 1 if m = n

where R signifies a range and a 2 is a normalizing term.

A simple modification is required when complex functions are

considered. The scaler product for complex functions is defined in the

following way.

fRB: (X) Bn(X) dX = b 2 6 (625)n mn

where B is the complex conjugate of B . This is the general form of them m

orthogonality principle. This principle would be used to test the orthogonality

of the eigenvectors discussed in Paragraph 4. of this subsection.

6. TENSORS

In Paragraph 3. of this subsection, a brief description of vectors was

presented. A vector is a special tensor of rank one {only one direction

associated with each term in the vector). A tensor, which is more general

than a vector, can have any rank and is therefore considered an abstract

quantity. Tensor analysis is a systematic representation of these abstract

quantities.
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A tensor is represented in a particular reference frame by a set of

functions that are similar to the representation of vectors in a reference frame

by its components. Like the vector, the properties of a tensor are independent

of the choice of the reference frame and is therefore a very convenient tool for

representing physical laws. Since the tensor is a general representation, the

transformation from one reference frame to another represents the center of

any discussion on tensors.

Consider a function and an admissible transformation. The definition

of an admissible transformation is provided in some detail in Reference 63, but

for the purposes of this discussion, an admissible transformation can be con-
sidered reversible. This states that the transformation from one reference

frame to another can be reversed back to the original reference frame. Let

__{Xi}be the original set of coordinates and (Yi} be a new set. Then

y. T y.(xl, X2 ' ... Xn ) (i = I, 2, ... n) (626)
1 I

where T represents the transformation of the coordinates. The transformation

of a function of the coordinates may transform differently from the transfor-
mation of the coordinates. The transformation T of the set of coordinates

(Xi} induces a transformation law for the set of functions (fi}. That is, for

eachf. (Xi), (i= 1, ... n, j= 1 ... m)J

G

f.(Xi, X2, ... X n) ---gj (YI, Y2.... In) • (627)J

Whatever the nature of the transformation G, it will be a function of the trans-

formation T; that is,

G = G (T) (628)

Consider the simple case when T is an identity transformation. Then

G is also an identity transformation. This means that if X. = Y. then f.
1 1' 1

(Xt' X2' "'" Xn) = f'l (Yi, Y_ ... Yn )" If'there exists a sequence of identity

transformations Ti, T2 and T s and the induced transformations G1, G 2 and G 3

and furthermore if T s = T 2 T 1 implying G 3 = G2 G1, then T and G are said to

be isomorphic. If the given set of functions f. (X.) satisfies the preceding
) 1

conditions, fj (X i) represents the components of a tensor in the X-coordinate
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system, the tensor itselfbeing the complete set of functions f.(Xi), gj (Yi),etc. J

exist:
Within the class of tensor component transformations, three subtypes

a. Invariance.

b. Contravariance.

c. Covariance.

The transformation by invariance leaves the quantity unaltered by

transformation although it may change form. A scalar point function would

be left invariant with a transformation by invariance.

Ifthere exists a set of functions A (X) (_ = I,

X-coordinate system such that B. (Y) is given by
1

ax
Ot

B. (Y) = _ A (X) ,
1 aY.

1

... n) in the

(629)

then A (X) is transformed by the covariant law.

component of a covariant vector.

Here A (X) is the
CL

If there exists a set of functions A0 (X) (0 = 1 .... s) such that B. (Y)
is given by J

_Y.
1

Bj (Y) = ax--_A0 (X)
(630)

then A (X) is transformed by the contravariant law.
0

ent of a contravariant vector.

A (X) isthe compon-
0

For a more general tensor, the rank may be covariant of rank s and

contravariant of rank r. For this case both a subscript and superscript are

used to represent the tensor and the transformation is understandably more

complex [63 ].
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SECTIONXIV. DESIGNING FORVIBRATION

The vibration and acoustic environments associated with launch and

space vehicles generate significant component and structural loads. These

loads must be considered in the vehicle design. This section presents proce-

dures for calculating vibration loads and discusses the use of the loads in

strength analyses.

A. Vibration LoadAnalysis Procedure

The vibration load analysis of a dynamic system such as a compm,ent

or structure is inherently difficult in that the desired loads are dependent on

the dynamic characteristics of a system whose design is partially dictated by

those loads. The loads are based on a dynamic analysis of a mathematical

model which represents the component or structure. A modal analysis is

usually done since vibration damage is assumed to occur in one or more of the

system vibration modes (resonant frequencies). The following paragraphs

present basic considerations for constructing mathematical models, some

basic mathematical damping representations and methods of estimating damp-

ing in structures, methods of selecting input vibration environments, and

examples of vibration load analyses.

i. MATHEMATICAL MODELS

The vibration load analysis must onclude a number of assumptions at

first, which must be later proven or improved. Thus, any design development

must include an interative procedure whereby more accurate vibration loads

and improved designs are produced with each iteration until a final design is

produced. Throughout this iteration process, the mathematical model of the

system will become more and more sophisticated and complex anti will repre-

sent design conditions closer with each step.

a. Preliminary Design Models

The mathematical model of a system in preliminary design should be

a simple one or two-degree-of-freedom system adaptable to simple and fast

analysis methods. Examples 1, 3, and 4 of Paragraph 4 of this subsection are

examples of prelimina1"y analysis models.
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b. Model Improvement

Preliminary design analysis may show the component or structure is

not able to carry the calculated vibration load; therefore, a better load calcula-

tion may be needed to avoid unnecessary redesign. Or, further design work

may have taken place, and the dynamics engineer can have a better description

of the design. In any case, an improved mathematical model of the component

or structure may be necessary.

Improved models should not be simple one or two-degree-of-freedom

systems, or simple uniform beams. Multi-degree-of-freedom systems of

many lumped parameters or continuous systems with changes in sections should
be used. End conditions and supports should be represented by springs and should

not be described as merely fully fixed or pinned. Examples 2 and 5 of Paragraph

4 of this subsection show improvements of preleiminary analysis models.

If the input acceleration spectrum is accurately known, special effort

should be given to obtaining loads from modes in the frequency range where

the input levels are especially severe. If the preliminary analysis showed

problem areas or weak components on the analyzed structure, the reanalysis

should give these areas special attention oy using more lumped masses and

more accurate mathematical rerresentation. All available information from

drawings, specifications, etc., should be included if possible.

Information from a vibration test of a prototype component or structure

should be used if available to verify natural frequencies, mode shapes, and

damping characteristics of the mathematical model.

el Final Design Models

Mathematical models of final designs should be constructed using the

recommendations in Paragraph 1. b above. The final design analysis will prob-

ably utilize one or more of the various computer programs conceived for

structural analysis. The complexity of the analysis should be limited only by

the time allowed for design finalization and by the computer capability.

Example 6 of Paragraph 4 of this subsection is a lumped parameter

representation of the final design configuration of a Saturn S-IC component.
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2. DAMPING

The damping in a dynamic system is one of the most important unknown
quantities to contendwith in ananalysis. Dampingalone restricts the ampli-
tudeof responseof a structure at resonance. In ananalysis, the damping must
be assumed, using past experienceand test data (if available) as the basis for
the assumption.

Dampingforces are quite complex and most damping representations
are approximationsof actual phenomenon. The following paragraphs illustrate
mathematical representations of somecommontypes of damping.

a. Equivalent Viscous Damping and Magnification Factor

The type of damping representation usually used in vibration loads

analyses is equivalent viscous damping, because other forms of damping are

difficult to handle analytically. This damping representation is based on true

viscous damping which is discussed in Paragraph b below. The damping of a

system is approximated by viscous damping. The approximation is satisfactory

for small damping, _ <_- 0.1 [64].

Equivalent viscous damping is usually expressed as percent or fraction

of critical damping; i.e., 4 percent or 0. 04. The symbol _ is used for the

fraction of critical damping. The most likely values for the fraction of critical

damping are between 0.01 and 0.05; however, much smaller values may occur

if the vibrating structure is devoid of joints and the vibration occurs in a vac-
uum [ 65 ].

As can be seen in the examples in Paragraph 4 of this subsection,

equivalent viscous damping is usually used in the form of a magnification fac-

tor Q, where

1
Q - =

2_
Magnitude of Response

Magnitude of Input
(at resonance only)

and

C
-- or fraction of critical damping
C

C
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where c is the equivalent viscous damping coefficient, and c c is the critical

damping coefficient. The above relationships actually apply only to single-

degree-of-freedom system; but in a modal analysis, each mode is considered

independently and as a single-degree-of-freedom system. Therefore, the con-

cept of Q can be used.

Figure 124 shows a curve which may be used to estimate damping of a

flat panel. The data were gathered from tests of panels excited by turbulent

boundary layers. The abscissa is the natural frequency of the panel and the

ordinate is the fraction of critical damping _ [66].
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Figure 124. Panel damping [66].

For an example of the magnitude of Q, consider the first mode response

of the LOX loading probe in qualification testing. The probe is a tube of about

15. 24 (6 in. ) O.D., length about 304.8 cm ( 120 in. ), and of thin wall con-

struction. The probe is shown in the weight attenuation exampte in Paragraph

D of this section. The test set-up approximately fixed one end and hinged the
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other. The firstmode frequency was about 150 Hz. The input level was ±15 g

peak or about 0.033 cm (0.013 in.)D.A. The response at the center of the probe

was greater than 3.81 cm (I.5 in.) D.A. Therefore, the magnification factor,

Q = I.5/0. 013, was greater than 115; or the fraction of equivalent viscous

damping would be about _ = 1/2Q = 0.0043.

b. Other T_pes of Damping

Other types of damping are shown below: 2

1. Viscous Damping

m_ + c._ + kx = F(x)

where c is the coefficient of damping. The damping force is proportional to

velocity and is in a direction opposing velocity.

2. Hydraulic Damping

ink'+ cl_l_ + kx = F(x)

where c is the coefficient of damping. The damping force is proportional to

velocity squared and opposes velocity. An example of this type of damping

arises when metering a liquid through a small orifice.

3. Structural Damping

mr + k(I +  g)x=

where g is the coefficient of structural damping, and i is _ . The

damping force is proportional to displacement but in phase with velocity. This

representation is primarily used in flutter problems where the motion is nearly
sinusoidal.

2. Bohne, Q., Selected Notes on Structural Dynamics. Unpublished, Seattle,

Washington: The Boeing Company, September 1961.
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4. Coulomb Damping

k

mx + Ff i-_ + kx = F(x)

The damping force Ff is "dry friction" and is constant in a direction opposing
velocity.

3. ENVIRONMENT SELECTION

To complete a vibration loads analysis on a component or structure, the

input vibration or forcing function must be "known, given or estimated. The

input levels could come from a number of different sources, such as actual data

measured at the component location, specifications, or predictions. MSFC

environment specifications [67, 68] and a prediction method document [69] are

discussed in Paragraph 4 of this subsection. The Kennedy Space Center envi-

ronment specifications are in Reference 70.

The component or structure must withstand a number of different vibra-

tion environments such as those encountered during ground transportation,

qualification and acceptance testing, static firing, vehicle launch, and flight.

The environment(s) which will most likely damage the component must be

determined. The vibration loads resulting from the environment(s) are then

calculated. Usually, the two most severe environments will be vibration qual-

ification testing and acutal service during launch and flight. The MSFC

practice is to use the steady state levels simulating actual service or
qualification testing as design load environments. Short duration, transient

levels are not used to calculate the MSFC design vibration loads.

If the component or structure being analyzed has more than one input

point, the input vibration environment is usually assumed to be applied to all

input points simultaneously and all are assumed in phase. If the input vibra-

tion environment at each input point is not the same, then the maximum envi-

ronment could be applied to all points; or all the environments could be averaged

together and the average applied to all input points. Examples 3, 4, and 5 of

Paragraph 4 below illustrate how the input vibration environment is used in an

analysis.

4. VIBRATION LOAD ANALYSIS EXAMPLES

The following paragraphs are examples of mathematical models and

modal analyses for various dynamic systems. The examples are presented to

illustrate the procedures discussed in the previous paragraphs.
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a. Example 1

An example of preliminary design analysis is presented in Reference 71.

The reference describes the vibration analysis of the Pegasus Micrometeroid

Measuring Satellite. The satellite is a complex structure consisting chiefly of

two folding wings containing many micrometeroid detection panels. The total

span of the extended wings is about 29.26 m ( 96 feet). These wings are folded

into a compact capsule for launch. During preliminary analysis, nostiffness

information or design details were known except the satellite was to weigh

about 16. 329 kg (3400 pounds). For purposes of calculating the vibration loads

during launch on the structure attaching the satellite to the launch vehicle, the

system was represented in the longitudinal direction by the following mathe-

matical model.

I M2 PEGASUS SATELLITE

k2 c2 (PREDICTED ENVIRONMENT INPUT)

/

M 1 SATELLITE TO LAUNCH I _
VEHICLE ADAPTOR F-i

\\\\\\ \\ \\ \\\ \\\\\\
LAUNCH VEHICLE

b. Example 2

Considering the Pegasus satellite discussed in Example 1, preliminary

analysis showed the support structure could not carry some of the vibration

loads. Before redesign was undertaken, better models of the total system were

desired. The improved mathematical model shown below was then constructed

in the longitudinal direction to better define the loads [71].
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DETECTOR PANELS

WING FRAMES

CENTER FRAMES
AND HINGES

MIDDLE 1/3 CENTER SECTION

J

I ADAPTOR SECTION

\\\\\\_ \\ \\\\\_\\\\\

LAUNCH VEHICLE

LOWER 1/3 CENTER SECTION

UPPER 1/3
CENTER SECTION

ELECTRONIC CANNISTER

c. Example 3

Another example of a preliminary analysis shows the work done on the

S-IC retro-rockets. The retro-rockets are mounted on the thrust posts as

shown in the sketch:
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THRUST
POST

RETRO-ROCKET

The mathematical model idealized the component as a simple, uniform

beam with one end simply supported and the other encl supported on a spring:

j L r

E,I,w

From Reference 72, thc general solution of the equation of motion of a

uniform beam with end supports is:

y = A sin nx + B cos n.x + C sinh n.x + D cosh n.x
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Differentiating,

y' = n(A cos nx - B sin nx + C cosh nx + D sinh nx) .

Differentiating three times and multiplying by EI,

M = (ED y" = n2(-A sinnx-B cosnx+ Csinhnx+Dcoshnx) (EI)

V = (EI) y,t_ = n 3(_A cosnx+B sinnx+ C coshrm+Dsinhnx) (EI)

q = (EI) y_,1, = n 4 (A sinnx+Bcos nx+C sinhnx+Dcoshnx) (EI)

where

y = deflection, m

x = length, m

M = bending moment, N/m

V = shear force, N

q = loading, N/m

E = Modulus of elasticity, N/m

I = moment of enertia, m 4

k = spring constant, N/m

A, B, C, D, n = constants.

The end conditions were then substituted into the foregoing equations: When

x= 0, y= 0
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and

whe n

x = L, y"= 0

A sin mx
.**C

sinh mx

when

EI
__ y,-x = L, y = k

or

(A sinnL) E1 n3 [-A cos n LA sin n L + \_]l_nE sinh nL =

+/A sin nL) ]\' si'_" _ cosh nL ;
(6 i)

therefore,

113 =
2k

(EI) (eothnL -cot nL)
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AIso,

W

q = _ w2y
g

where

g = acceleration of grayly', m/sec 2

w = frequency rad/sec

n4 w w 2
g EI

(632)

The structural properties of the retro-rockets are given below:

E

k __

30x 10 s, I = 13.97 m 4 (550 in. 4), w = 1339.5 g/cm

(7.5 lb/in.)

750.12× l0 sg/cm (4.2x 1051b/in.) and L = 2.2098m

(87 m.).

Therefore, from equation (631),

n = 1. l14/m (0.0283/in.)

and from equation (632),

_9
f - = 123 Hz .

27r
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The modeshapeis calculated next. This is a preliminary analysis so only the
first mode is calculated.

[A sin Lx)y = A sin nx + _'si_ L_" sinh nx

at

x = 0, y = 0

x = 0.2L, y = 0.527A

x = 0.4L, y = 0.958A

x = 0.6L, y = 1.218A

x -- 0.8L, y = 1.301A

x = 1.0L, y = 1.258A

y
1A

0

MODE SHAPE

! I l I I

0 0.2L 0.4L 0.6L 0.8L 1.0L

x

Use the environmei_t in Sub-Zone 2-5-2-A _',f Reference 68 as input to

the component. The input is applied at both support points in phase. At 12J Hz

the vibration environments are. 06 g2/Hz random and ±3. 2 g steady state shm-

soidal. If the damping is assumed to be 4 percent of critical, the magnification
is

1

Q = zt uU4)_'^.^'" = 12.5
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Assume the maximum response is at 0.8L, and the vibration load is calculated

as follows:

/-w

Random dynamic load = (a)_]_/2) (Q)(f) (PSD) (633)

where

a = confidence level described in Paragraph 2.A.4 of this section.

Q = magnification factor

f = frequency of resonance

PSD = random vibration input environment at f.

This random dynamic load is the response of a single-degree-of-freedom sys-

tem to a random input [ 73]. Because this is a modal analysis, each mode can

be considered as a single-degree-of-freedom system and the above load equa-

tion applies.

Random dynamic load =

Sine dynamic load =

(2.2) _/(7r/2)(12.5)(123)(0.06) = 26.4g

(Q) (steady state sine environment at f)

(12.5) (3.2) = 40g .

The sine load is the highest; therefore, it is used for the load calculations.

Using the dynamic load and the mode shape, bending moments and shear loads
can be calculated.
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Or, for a quick analysis, the 40 g could be spread uniformly and the loads
calculated.

40 g

d. Example 4

The following is another example of a preliminary design analysis

model. The fuel fill and drain line located in the thrust structure of the

Saturn V S-IC stage is the component. The installation is shown in the follow-

ing sketch:

,v_AFT FUEL BULKHEAD

-__- F,LLAND.RA,NVALVE
,/7<_¢t',. _/- _,MBAL

j _..._ __'NG JOINT

The preliminary mathematical model is constructed as shown below. Assume

the effect of the concentrated mass (sliding joint) cancels the moment carrying

capability of the gimbal joints. Assume pinned-pinned end conditions.
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(129)4 (o. 328)
_L 4w

f = 39.4 Hz .

From Reference 68, the input levels at 39.4 Hz are obtained. Use either aft

skirt umbilicals (sub-zone 2-l-l-A) or aft fuel bulkhead (sub-zone 2-6),

whichever is higher. At 39.4 Hz, the environments are . 1 g2/Itz random for

sub-zone 2-1-1-A and ±2.75 g steady state sinusoidal for sub-zone 2-6. The

damping is assumed to be fairly high due to the friction in the sliding joint and

the gimbals. Therefore, assume Q = 1/2_ = 5.

Random dynamic load = (_)_](_12)(Q) (f)(PsD)

= (2.2)J(_12)(5)(39.4)(0.i) = 12.241

Sine dynamic load = (Q) (_G pk)

(5) (2.75) = 14g .

The sinusoidal load is the highest, so it should be used. The load dis-

tribution for the calculated mode would be as shown in the following diagram:
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_,...J4g MAXIMUM AT

CENTER OF BEAM

For preliminar3y analysis the load was spread uniformly along beam length:

I I I I | I I 1

14 g x 0.328 = 8215.6 g/cm (46 LB/IN)

Now, bending moments and shear loads can be calculated.

e. Example 5

Referring back to Example 4, more information was available for a

second iteration of the vibration loads analysis of the fuel fill and drain duct.

The stiffness (kt) of the bulkhead was estimated to be about 2.83 x tO e m-kg/

rad (1.71 × 106 in. -lb/rad). Closer estimates of the weights of the gimbals and

the sliding joint were available. An improved mathematical model was then

constructed as shown in the following sketch. The duct was assumed straight

from bulkhead to umbilical plate for response analysis purposes. The weights

of the short sections of the ducts were lumped at the bulkhead and the gimbal,

2. Some of the long duct weight was lumped at the right gimbal. Therefore,

W 1 = 6804 gm (15 [b) , W 2 = 9072g (20 lb) , W 3 = 13608g (301b) , and

W 4 = 9616.3g (21.21b) . The long duct EIis still 433× 106 kg- cm 2

(148x 1061b_ in. 2). The duct lengths are l 0 = 40.6cm (16 in.) ,

1 t = 327.6 cm(129 in.), 12= 47.2 cm (18.6 in.), and 13 = 15.36 cm

(6. in.) .

The following calculations illustrate one method of estimating force

influence coefficients. The equations for the influence coefficients are only

estimates. Influence coefficient a22 is estimated by assuming the ducts and

valve that make up length 12 are infinitely stiff. Therefore, all motion is due

to bulkhead fle.xibility. This can be assumed because the bulkhead is much

less stiff.
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kt ,, 1.71 x 10s (BULKHEAD)

a22 = kt = -_

Influence coefficient all is estimated making the same assumption as in a_.

Also, assume duct 11 is a simply supported beam between the gimbals. The

short duct attached to the umbilical plate (at right) is assumed infinitely stiff.

[I-LZ_ 2 (11 - 10)2 1Q2 = 213 × 10 -s
all = a22 \ 11 ] + (3) (EI) (11)

Theother influence coefficients can be estimated in the same manner using

similar assumptions.

(11-10) 1£_ = 5Sx10-6
a13 = a31 = a22 II 12

10 (3/41_-1_)+a22 " 11-10= 199)< 10 -_
a14 = a41 = 12EI 2 11

a12 = a21 = a22 _ = 178x 10
11

I--L = 66x 10 -6
a23 = a32 = a22 12

a2_ 102 x lO -_
a24 = a42 = 2 =
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a33-- I_2 = 21.4x 10 -6

k t

a:_4 = a43 = .._"- • _ = 33x 10 -s
2 12

1--_+ a22 = 353x 10 -G
a44 = 48EI 4

From the above force influence coefficients, the inverse of the stiffness
matrix [ K ] -1 can be written, and from the weights given previously, a mass

matrix I/g[W] can be written. Therefore, the eigenvector equation is:

-(_2n/g) [Z]-I [W] {x} = 0

The derivation of the above equation can be seen in Section XHI. B. 4. and is

analogous to

__2 m
_- x+x = 0

in the single-degree-of-freedom case. The etgenvector equation becomes:

(_/g) [D](x) = (x}

where [D] = [K]-I [W] is the dynamic matrix or

xlIx 2

x 3

x4

_2
n

= io-'_"7"

3200 3560 1740 4220"

2670 4060 1980 2160

870 1320 641 700

2980 2040 990 7490

Ifx 2

x 3

x 4
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Solving for the eigenvalues and eigenvectors, the frequency and shape of first

mode are obtained. The solution may be obtained by using any of a number of

iteration techniques such as shown in Section XIII. B. 5. or using a computer.

w l = 183 fl = 29.2 Hz

i 0830I
x 2 _ +0. 645

x 3 +0. 210

x 4 , +1. 000

Then the second mode is obtained

w2 = 322 f2 = 51.3 Hz

x 2 -i. 000

i x:_ I -0.326
x 4 +0. 937

Since this is not a final analysis, only two modes were calculated to save time.

From Reference 68, the input environments are :

Steady State

Zon.__ee Random Sine Frequency

2-1-1-A 0. 1 g2/Hz il. 8 g 29.2 Hz

2-6 0.02 g2/Hz +2.75 g 29.2 Hz

2-1-1-A 0.1 g2/Hz +2 g 51.3 Hz

2-6 0. 065 g2/Hz ±2.75 g 51.3 Hz
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Assuming Q = 10, the steady state sinusoidal loads are calculated using the

highest environment as the input at 29. 2 Hz

NL

Dynamic load

773.95N

VL

= (Q)(Xn) (±G pk) (weight)

= (10) (0.83) (2.75) (15) --

= 1565.65 N (354 lb) at 2

= 773.95 N (174 lb) at 3

= 2548.70 N (573 lb) at 4

1565.65 N

1521.2 N

2

1

521.21 N (342 lb) at 1

2548.70 N

4

at 51.3 Hz

Dynamic load = -707.23 N (-159 lb) at 1

-2446.4 N (-550 lb) at 2

-1200.96 N (-270 Ib) at 3

2433. 05 N (547 lb) at 4

VR
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N

3

" 1
1200.96 N

2446.40 N
707.23 N

2433.05 N

The random vibration loads are calculated using the highest environment as

input at 29.2 Hz.

VR

Dynamic load = (Xn) (a)_J(Tr/2)(Q)(f)(PSD) (weight)

where

x = mode shape
n

(weight) = weight of lumped mass n

a, Q, f, PSI are defined in equation (634).

Dynamic load = (0.83) (2.2)J-(_/2)(10)(29.2)(0.1)

831.77 N (187 lb) at 1

858.46 N (193 lb) at 2

422.56 N (95 lb) at 3

1405.56 N (316 lb) at 4

(15)
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N
ML 422.56 N

VL

858.46 N
831.77 N

1405.56 N

4

at 51.3 Hz

VR

N ML

3

V L

Dynamicload = -382.52 N(-861b) at 1

= -858. 46 N (-193 lb) at 2

= -644.96 N (-145 lb) at 3

= 1316.60 N (296 lb) at 4

644.96 N

858.46 N

382.52 N

1316.60 N

4

VR

529



With the aboveloads, the forces and moment at the bulkhead, at the right gim-

bal, and along the duct can be calculated.

f. Example 6

The following figures show the model used for the final design analysis

of the cold helium feeder duct in the thrust structure of the Saturn V S-IC. The

duct is installed as shown in Figure 125.

COLD HELIUM LINE

7

GIMBAL_ GIMBAL

ROLLER BRACKET (ATTACHED TO HEAT SHIELD FRAME)

GIMBAL BRACKET 1 {ATTACHED TO HEAT SHIELD FRAME)
GIMBAL

__ GIMBAL%..
x GIMBAL

• _ _-_-'- FLANGE • LOWER THRUST RING

FLANGE @ ENGINE

z Y

Figure 125. Cold helium feeder duct installation.

For the analysis, the duct was broken into two systems at bracket 1.

The duct was analyzed in two parts because it was qualification tested that way.

The gimbals were taken as short beams [ 3. 81 cm ( 1.5 inches long) ]

with a flexural rigidity equal to the spring rate of the gimbal. The ducts were

assumed to have no rotational inertia. The ends of the ducts were fixed in all

directions simulating the qualification test set-up.

530



SYSTEM ONE

3.238cm

3.81cm

26.11 lcm

26.111cm

26.111cm

26.11 lcm

2O

3

4

5

26.111cm / GIMBAL

26.111cm 6 _. .3.81cm

_V'x_14 2s4c.,
3.81c. js_ f" "_ ROLLER8RACKET

GIMBALIS'|9._ D/11 ,=._jtl8 22.275cm
10 _, "U?d='_Y_lb 15 22.275cm

"-,e._.-_"_16 _.27s=,
x x'-_ "_ _ 17 22.275cm

1 __-_ _

• SYSTEM TWO

15 1 "_GIMBAL : !

/X: 3.81cm _,4(1_ 1_ }

,i,

GIMBAL
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B. Use of Vibration Loadsin Strength Analyses

The vibration loads calculated by the methods of Paragraph 1 below are

to be used by the designer and stress analyst; therefore, these people must be

told the meaning of the loads and how the loads are applied. The following

paragraphs describe relationships between vibration loads and design loads.
The statistical confidence levels associated with vibration loads are also

described.

1. DESIGN LOADS AND CONFIDENCE LEVELS

a. Limit Load

The limit load is defined to be the maximum expected steady state load
that a particular comp°nent or structure will see in service. Vibration loads

calculated as shown in the previous paragraphs are considered to be limit loads.

b. Yield Load

The yield load is the maximum load that a component can carry without

the weakest part of the component or structure yielding (stressed beyond the

defined elastic limit). For MSFC applications, the yield load should be 1.1
times the total limit load.

c. Ultimate Load

out the

load is

The ultimate load is the maximum load that a component can carry with-

weakest part of the component or structure rupturing. The ultimate

usually 1.4 times the total limit load.

d. Confidence Levels

In calculating a response vibration load, a statistical confidence level

should be specified. All vibration loads will have an applicable confidence level

unless the input levels are known exactly. For example, one can state that the

shear load at a point on a structure will not exceed X newtons with a 97.5 per-

cent confidence level, meaning that 97.5 percent of the time the structure is in

use the shear load at the point will be less than X newtons.

For the random vibration environment, the associated level states the

confidence that the environment is the root mean square (rms) or 1 sigma
acceleration level. The associated confidence level for the MSFC environments
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is 97.5 percent. Therefore, the random response vibration load calculated is

the rms or I sigma load with 97 percent confidence. MSFC requires that the

design random vibration loads shall be 2.2 times the rms load. Therefore,

the calculated random vibration loads (limit loads) are 2.2 sigma loads with

97.5 percent confidence.

The steady state sinusoidal loads also have a 97.5 confidence level due

to the input environment. The sinusoidal loads are deterministic and do not

have an associated probability occurrence. Therefore, they are not multiplied

by any sigma value.

2. EQUIVALENT STATIC LOADS

Vibration response loads are usually applied as static loads in a strength

analysis. For example, consider the first three modes of a pinned-pinned beam.

The vibration load would be applied as a static load as shown below:

FIRST MODE

SL SR

SECOND MODE

$R

t
SL

THIRD MODE

SL SR

The strength analysis could then be accomplished using the above load-

ing conditions. The loading coP:l!*A,,,_ should then be reversed and the analysis

re-done because the vibration load is plus and minus.
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For quick analyses, the actual load diagrams, shown above, can be

simplified. The curved load profile could he replaced with a rectangular load

profile with either equal area under the load curves or the maximum load of

the actual profile spread uniformly.

FIRST MODE

SECOND MODE

Another assumed load profile shape could be triangular. The area of

the actual profile and the triangular profile could be equated, or the maximum

of the actual load could be equated to the maximum of the assumed triangular

profile.

FIRST MODE

SECOND MODE

o

aJ

conducting a strength analysis of a component or structure.
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COMBINING LOADS

Time Correlation of L _ds

Vibration loads should be combined with all other applicable loads when

Time correlation



is one method of determining whether load combination is applicable. Loads

from various sources should not be combined if they do not occur at the same

time. For example, transient loads which occur at stage separation or engine

cutoff do not occur during periods of high steady state vibration loads; whereas

other transient loads, such as hold down release, do occur during periods of

high steady state vibration loads. Therefore, the former loads would not be
combined with vibration loads and the latter would be combined.

The following is a list of types of loads which can and cannot be expected

to combine with high, steady state vibration loads.

Loads Likely to Combine
With Vibration Loads

Loads Not Likely to Combine
With Vibration Loads

Pres surizatio n

Venting

Lift-off (Hold down Release)

Vehicle Bending

Vehicle Torsion

Vehicle Acceleration

POGO

Thrust Vectoring (Gimballing)

Aerodynamic

Fluid Flow in Ducts

Slosh

Valve Opening or Closing

Ignition Transients
Cutoff Transients

Separation of Stages
Rebound

Propellant Loading

Pre-ignition Pressurization

b. Combining Static and Vibration Loads

Static loads and vibration loads are added directly. The vibration load

should be taken as an equivalent static load, keeping in mind that the vibration

load is two directional; i. e., plus and minus. Therefore, the vibration load
will add to the static load in one direction and subtract in the other.

c. Combining Normal Mode Loads

Depending on circumstances, modal loads may or may not be combined.

If a modal analysis is done simulating a sinusoidal qualification test, the modes
are not combined since only one mode at a time is usually excited. If the anal-

ysis is simulating actual service or random testing, the modes should be added

because random vibration can excite all modes simultaneously.
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Loads from each of the modes in any one axis are combined by the

square-root-of-the-sum-of-the-squares method. Stated in equation form, the
modal loads are combined as follows.

Dynamic Load = d (Load of 1st mode) 2 + (Load of 2nd mode) 2 + ...

d. Combining Multiple Axes Loads

Loads from different axes are usually specified separately but can be

combined if desired. This type of load combination may be necessary if a

single resultant vibration load is desired instead of orthogonal axes vibration

loads. Another case when multiple axes loads may be combined is the addition

of vehicle bending or torsion loads to component vibration loads when the vehi-

cle axes do not correspond to the component axes.

In order to combine multiple axes loads intoa resultant load in a par-

ticulardirection, the component of each individualload in the desired direction

must be found. The uniaxialcomponents of allloads are then combined by

the square-root-of-the-sum-of-the-squares method as shown in Paragraph c.
above.

e. Combining Shock and Vibration Loads

An input shock load is assumed to excite all modes in the direction of

the load. The response shock load is therefore a short duration vibration load

and can be combined with steady state vibration loads. If phasing is known,

then the shock and vibration loads can be added exactly; otherwise the square-

root-of-the-sum-of-the-squares method applies as shown in Paragraph c.
above.

C. Vibration Damage

Damage due to vibration is fatigue damage rather than any type of over-

load failure. Vibration fatigue damage can happen in rather short periods of
time; i.e., 104 cycles at 100 Hz = 1.7 minutes. Therefore, methods of deter-

mining the extent of fatigue damage sustained by a component or structure may
be necessary in designing for vibration.

Mechanisms of fatigue damage are complex and depend on material,

notch sensitivity, stress level, time variation of loading, orientation of
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the crystalline structure, flaws, etc. [ 74]. Due to these complexities, the
cumulative fatigue damagetheories now in existance are not very accurate,
but lacking any simple, improved methods, the existing theories are used. The
listing of fatigue damagetheories could bevery long if all were included; how-
ever, the following three shouldgive the reader a general idea of fatigue damage
estimation.

1. CUMULATIVE DAMAGETHEORIES

a. Miner's Linear Damage Criteria

Miner's rule [75, 76] theorizes that a structure or component will fail

when a unique amount of energy has been absorbed by the structure at the point

of failure. This energy absorbed is proportional to the damage inflicted.

Fatigue damage due to a given load is assumed proportional to the ratio of the

number of cycles at the given load to the number of cycles required to cause

failure at that load. This is called the cycle ratio. If a number of different

loads are applied in succession, failure will occur when the sum of the cycle

ratios of the loads equals one, or

n k

N1 N 2 N3 Nk

where

n k = number of cycles of applied load k

Nk = number of cycles at load k which would cause failure.

This cumulative damage theory does not account for the beneficial or detrimental

effects of different levels of loading in sequence. Many investigators have foulxl

that if low load amplitudes are followed by higher load amplitudes, the cycle

ratios sum will be greater than one, and high load followed by low load will result
in a cycle ratios, sum less than one.

b. Non-Linear Damage Theory of Marco and Starkey

Marco and Starkey [ 75 ] explain the variation of the cycle ratios sum

by assuming that damage accumulates slowly at first and then rapidly as failure

approaches. The initial damage rate is higher for higher applied loads. In
equation form
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D. = (nFNj) xj
1

where

D. = damage after the ith cycle of load j
1

nj/Nj = cycle ratio of load j

Xj = f(a), the exponent is a function of the stress level aj of load j

for any given material.

The above equation is used in the following manner, assuming Xj is known for

all the applied loads.

From cycle ratio nl/N 1 of load 1, calculate the resultant damage DI:

D 1 = (nl/N1) XI

Then calculate an equivalent cycle ratio for load 2 which would give damage DI:

D 1 = (n2e/N2e)x2

Add the actual cycle ratio n_/N 2 of load 2:

(n2e/N2e) + (n2/N2)= (n1+ 2/NI + 2}

Then calculate the total damage the component has sustained after application

of load 1 and load 2:

DI+ 2 = (nl+2/Nl+2) X2 .
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Using this method, the damagedueto any numberof successive loads could be
calculated. The componentwill fail when D1+ 2 + ... + k = 1. The order of

succession of loads must be known when using this method.

c. Non-Linear Damage Theory of Henry

Henry [ 75] proposed another method of predicting fatigue damage from
non-constant loading.

D. = J

where

D°

1

f_j = cycle ratio of load j

a j-F
_/_ = "overstress ratio" =

J F

fat ig_).e limit.

= damage after the i th cycle of load j

of load j with F being the material

The damage due to the various loads are calculated and summed similarly to

the method in Paragraph b. above. This method also requires knowledge of the
order of load application.

2. APPLICATION OF DAMAGE THEORIES

a. Damage Due to Sinusoidal Loading

Sinusoidal loading would be either a constant level load or loading with

a known variation. Either way, the cumulative fatigue damage can be estimated

by one of the methods of Paragraph 1. above using known material fatigue

strength values and measuring or calculating the stress level of the component.

For constant level loading, Miner's rule is a valid criterion. Material

fatigue strengths are determined by constant level testing. It must be kept in

mind that the normal S-N fatigue life curve is an average or mean curve, half

of the specimens tested failed before the curve indicates and half lasted longer
than the curve indicates.
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For sinusoidal loading with a knownload variation, non-linear fatigue
damagecriteria, suchas Henry's theory (Paragraph 1.c above), have been
shownto be more accurate [ 75]. Non-constantlevel sinusoidal loading can
arise under circumstances suchas sinusoidal sweeptesting whenpassing
through resonancesof the test specimen.

Referring to Paragraph 1.c above, it canbe seenthat the cycle ratio of
eachloading level must be calculated. For the caseof sinusoidal sweeptesting,
the cycle ratios of the various loading levels could be calculated as follows,

knowing the response versus frequency characteristics from accelerometers or

strain gages mounted on the test specimen and "knowing the test frequency sweep
rate. The response stress levels can be classed into amplitude steps (8 or 10

steps from minimum to maximum level). The time in each amplitude step is

known; therefore, the cycle ratio of each step can be calculated, knowing the

average frequency of each step. Then the accumulated damage can be estimated.

b. Damage Due to Random Loading

Random loading is more complex than constant level loading, because
it is difficult to calculate cycle ratios of the various levels of loads and the

sequence of loading cannot be determined. Usually some sort of damage esti-

mate is made based on assuming :Lloading distribution and linear cumulative

damage. Random S-N curves of the materials used would be helpful in esti-

mating fatigue damage [ 77 ).

The fatigue damage sustained by a component could be estimated in the

following manner. First the rms acceleration levels and the time at each level

must be found. The time and level the component experienced during lab tests

can be found from lab and test reports. The time that the component experienced
actual service environments can be found from service test records. The levels

during the service test must be estimated if transducers were not mounted on

the component. The service level estimates can be based on predicted environ-

ments such as listed in Reference 68, or can be based on data taken near the

component during a service test. The service levels must be the response, not

the input levels of the component. All the loads that the component experienced

must be used to get the stress history at the critical location on the component
where failure will occur first.

Next, the stress history must be classed into amplitude steps (8 or 10

steps from minimum to maximum). Assuming some distribution of stress cycle

levels, such as the Rayleigh distribution which has been found to fit the distri-

bution of peaks of a random process very well, the number of cycles in each

amplitude step can be estimated.
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D. The MSFC Environment Documents

MSFC has published documents specifying the vibration, shock, and

acoustic environments for the Saturn vehicles [ 67, 68, 78]. MSFC has also

published a document [ 69 ] which describes a method by which an environment

may be predicted if certain information is known. These documents and their

use are described in the following paragraphs.

1. SELECTING THE PROPER ENVIRONMENT

In order to specify a representative environment for the various types of

structure and the many components in the Saturn vehicles, they were divided

into zones and subzones. For instance, the Saturn V first stage (the S-IC) is

broken down into seven major zones such as the engine area, the thrust struc-

ture, the aerodynamic fins, etc. Each of these major zones is then broken into

subzones corresponding to particular types of structure or even particular

components. For example, in the thrust structure (Zone 2) there is a subzone

for the skin stiffeners of ring frames, another subzone for the center engine

support beams, etc.

In order to find the applicable subzone environment for use in a loads

analysis of a particular component, one must know the exact location of the

component. If the exact location is in doubt, the more severe environment of

the major zone should be selected. Each of the MSFC environment documents

describes the procedure for selecting the proper zone or subzone.

2. VIBRATION AND SHOCK ENVIRONMENTS

The zone or subzone vibration environment is made up of two parts; the

random vibration environment and the sinusoidal sweep environment. These

two environments represent the steady state level and any short duration high

levels that may occur during static firing and flight.

The random vibration environment represents, with a 97.5 percent con-

fidence level, an envelope of the steady state random vibration that will occur

in the particular zone or subzone during static firing and flight. These random

levels were derived from statistical analyses of data from previous vehicles

and adjusted to account for significant differences in vehicles. For more infor-

mation on derivation of the random vibration levels, the reader is referred to

Reference 69 in conjunction with Reference 79.
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The sinusoidal sweepvibration level is usedto accountfor anyshort
duration, high level vibration which may occur that is higher than the steady
state level. Onehalf the sinusoidal sweeplevel is an envelopeof the steady
state rms acceleration levels which will occur, with a 97.5 percent confidence
level, during static firing and flight. In a dynamic loads analysis, onehalf the
sinusoidal sweeplevel shouldbeused as the input vibration level. Again, the
reader is referred to References69and 79 for a more completederivation.

The shockenvironments canbe foundon the samepageas the vibration
environments.

3. ACOUSTIC ENVIRONMENTS

The acoustic environments are divided into major zones and designated

internal or external within a zone. Internal or external merely means that the
environment is either within the vehicle or outside the vehicle.

4. WEIGHT ATTENUATION

If the vibration environment specified in the environment documents

[ 67, 68, 78] are used without modification as inputs to components, the driving

structure is assumed to have an infinite impedance. That is, anything attached

to the driving structure will have no effect on the motion of the driving struc-

ture. In many instances this is obviously not true, and the effect is recognized

by a method of environment attenuation known as "weight attenuation." This

method attempts to account for the mass impedance of the component by atten-

uating the driving structure environment. The attenuation factor is shown
below:

Weight Attenuation Factor = F =
Weight of Structure

Weight of ._tructure + Weight of

Component

The weight attenuation factor F is applied to reduce the random environ-

meut. The square root of F = _ is applied to reduce the sinusoidal environ-

ment. The square root of F = _ is also used to lower the frequencies of both
the random and the sinusoidal environment.

This method must be used with great care and judgement and approved

by the Vibration and Acoustics Branch of MSFC's Propulsion and Vehicle Engi-

neering Laboratory.
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The following is an example of the weight attenuation technique used for

a component mounted on the forward LOX bulkhead of the S-IC. The component

is the LOX loading probe with a weight of about 12.9 kg (28.5 pounds). It

extends through the bulkhead in the manner shown in the sketch below-

LOX TANK SKIN

T
__-_ FORWARD LOX BULKHEAD

I _ PROBE FLANGE IS BOLTED
TO BULKHEAD FITTING

LOX LOADING PROBE (12.9 kin)

SLIDING SUPPORT (PERMITS

VERTICAL MOTION)

SLIDING SUPPORT LEGS

LOX TANK BAFFLES

For this problem, the probe was assumed to be perpendicular to the bulkhead

because the environment is specified in that direction. Therefore, the atten-

uated environment in the perpendicular direction is calculated as follows:

Weight of component = weight of probe [ 12.9 kg (28.5) ] plus weight of

bulkhead fitting [4.0 kg (S. 9)]

W C = 12.9+4.0 (28.5+ 8.9) = 16.9 kg = (37.4pounds),

An area of the bulkhead of about 2-1/2 times the fitting was assumed to

be the effective structure size, The average thickness of the bulkhead was

assumed to be 0. 381 cm (0.15 inch).
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Weight of structure =

m_

(Tr) (R) 2 (t)(p)

(_) (20) 2(0.15) (0.1) = about 9.07 kg (20 lb).

Therefore, the attenuationfactor is

F

2O

20 + 37.4
- 0.35

and

= _]0.35 = 0.59 •

The environment to be attenuated is the forward LOX bulkhead environment,
subzone 7-1 in Reference 68.

Subzone 7-1 Random Envi-.x)nment (perpendicular to bulkhead)

20-55 Hz at 0.1 g2/Hz

55-160 Hz at +9 dB/oct

160-630 Hz at 2. 5 g2/Hz

630-2000 Hz at -9 dB/oct

Subzone Sinusoidal Sweep Environment (perpendicular to bulkhead)

5-36 Hz at 1.016 cm (0.4 in.) D.A.

36-450 Hz at ±26.0 g pk

450-550 Hz at 0. 00635 cm (0.0025 in. ) D.A.

550-2000 Hz at ±38.0 g pk

The attenuation factors are now used to modify the above environments. It
must be kept in mind that both the acceleration levels of the environment and

the frequencies of the environment are lowered by this technique.
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The random environment is attenuatedas shownbelow:

(G) (F) = (G attenuated)

(0.1) (0.35) = 0.035 gVHz

and

(2.5) (0.35) = 0.87 g2/Hz

Lower frequencies

(f) (_/'F) = (f attenuated)

(20) (0.59) = 12Hz

and

(12)+ (55-20) = 47 Hz

3.01 0.87 )antilog \ +9 log 0.035 + log 47 = 138 Hz

(138) + (630-160) = 608 Hz.

Therefore, attenuated random environment is

12-47 Hz at 0.035 g2/Hz

47-138 Hz at + 9 dB/oct

138-608 Hz at 0.87 g2/Hz

608-2000 Hz at -9 dB/oct.
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The random envi_onmentsin Reference68do not extendbelow 20Hz;
so the first freqr,mcy of 12Hz could be made20 Hz, thus slightly decreasing
the width _thr lower constant level bandwidth.

The sinusoidal environment is attenuatedas shownbelow

(±G) (_"F) = (±G attenuated)

(26) (0.59) = ±15 g .k

and

(38) (0.59) = ±22gpk .

Lower frequencies

(f) (_f-F) = (f attenuated)

(36) (0.59) = 21Hz

and

(450) (0.59) = 265Hz

D.A. displacement (at 265 Hz) =
15

(0.051)(265)_
= 0.01066 cm

(0.0042 in.) D.A.

J( 22next frequency = 0.051) (0. 0042) = 320 Hz .
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Therefore, the attenuatedsinusoidal environment is

21-265 Hz at +15 g pk

265-320 Hz at 0. 01066 cm (0.0042 in.) D.A.

320-2000 Hz at +22 g pk .

The environment is complete except for less than 21 Hz so the displacement
below 21 Hz must be found

inches D.A. =
15

(0.051) (21)' = 1. 691 cm (0.666 in. ) D.A.

Therefore, the attenuated sinusoidal environment less than 21 Hz is

5-21 Hz at 1. 691 cm (0.666 in. ) D.A.

It was assumed that in the direction tangential to the bulkhead that little

or no attenuation would occur because less of the probe weight would be effec-

tive and more of the bulkhead would probably be effective.

5. PREDICTING ENVIRONMENTS

NASA Technical Note D-1836 [ 69] presents a technique for predicting

environments on rocket vehicles. The technique is based on certain assump-
tions.

a. Similar types of structure possess essentially similar dynamic
characteristics.

b. There are only two sources of vibration energy, mechanically

induced vibration from the rocket engines or other machinery in motion and

fluctuating pressure excitation from engine noise and boundary layer noise.

c. All vibration sources have wideband random frequency content

similar to spectra used as references.
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The methodis empirical andthe inaccuracies must be recognized.

The exampleshownin Reference69 illustrates the calculations necessary
in applyingthe method.

E. Useful Relationships

This paragraph presents techniques for environment spectrum shaping,

conversion of environmental quantities to other quantities, and calculation of

spectrum composites. These techniques are primarily connected with vibra-

tion testing but are useful in loads calculations.

1. VIBRATION ENVIRONMENT SPECTRUM SHAPE

The shape of the spectrum of a vibration environment is influenced by

the capabilities of vibration testing equipment. Even if an environment may

never be used as an actual test input, it is usually shaped with test equipment
in mind.

a. Sinusoidal Environments

Sinusoidal sweep environ, rants are usually shaped such that the ampli-

tude levels are either constant displacement or constant acceleration as fre-

quency increases. Most modern sweep test equipment has an automatic sweep

speed drive that varies the test frequency logarithmically. The equipment also

has an automatic gain control which varies the power to the vibrator so the dis-

placement or the acceleration to the test specimen can be kept constant. There-

fore, the MSFC sinusoidal sweep specifications are shaped with constant levels

and logarithmic frequency sweep rates.

Constant levels mean that as frequency increases the acceleration level
must either increase or be constant. If one decides that the acceleration level

of an environment at the higher frequencies is not realistic, a square step down

can be specified, such as

XXX-500 Hz at ±20 g pk

500-2000 Hz at ±10 g pk .

This means that at 500 Hz, the test operator must manually turn down the gain

on the test equipment. The down step is a manual operation and there may be
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overshoot or the frequency may not be quite correct. This manual operation

does not affect loads calculations except when the loads are supposed to repre-

sent test conditions and one of the modes is near the step-down frequency.

b. Random Vibration Environments

Random vibration environment spectrums are specified with constant

power spectral density levels over rather wide frequency bandwidths. This is

because random vibration test equipment cannot follow many sharp, narrow

amplitude level changes in the spectrum. Modern automatic random equipment

usually has filter bandwidths of about 25 or 50 Hz in the control feedback loop,

which limits the bandwidths of the input spectrum. Sloping portions of a ran-

dom test spectrum are approximated by the test equipment as 25 or 50 Hz wide

steps.

2. USEFUL ENVIRONMENTAL RELATIONSHIPS

a. Vibration Environment Quantities

Sinusoidal Vibration Relationship

+Gpk = (0.0051) (D.A.)(f)2

where

±G pk = peak acceleration

D.A. = double amplitude inches displacement

f = frequency .

Random Vibration Relationship

The relationship between the sloping and constant level portions of the

PSD spectrum are as shown below:
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r_

Gb

Ga -

__/
I
I

I I
fa fb

FREQUENCY

M log Gb/G a
101o7 = log fb/fa

where

M = slope of curve in dB/oct

fa = frequency at low frequency end of sloping PSD curve

fb = frequency at high frequency end of sloping PSD curve

G a = PSD level at fa

Gb = PSI3 level at fb

Relationship between PSD and G in a frequency band

PSD =
(rms G in bandwidth) 2

Bandwidth

The composite of a random vibration spectrum is computed as follows:

The spectrum is divided into bandwidths of the sloping and horizontal portions
of the curve.
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Mean Square Acceleration

in bandwidth flto f2
3.01 G 1
3.01i M

3.01 GZ
3.01+ M

(f2) fl - fl

M/3.01J

For M = -3.0 to -3. 02 use:

Mean Square Acceleration

in bandwidth fl to f2
= G1 fl (In f2 - In fl)

Then, the composite equals square root of sum of mean square values of each
bandwidth.

rms G = _/G2_2 + G22_3 + ....

If the random spectrum contains superimposed sinusoids, the total rms value

of the spectrum plus the sinusoids is the square root of the sum of the square
of the spectrum rms G plus the square of the rms of each of the sinusoids.

!

TOTrms G = /G 2 + G 2. + G 2 +
random sme 1 sine 2 • g m

_4

During testing, each sinusoid is rejected from the random vibration control

loop by rejecting a bandwidth of random including the sinusoid; so that band-
width does not have the correct test level.

b. Acoustic Environment Quantities

Conversion from one third octave band to spectrum level:

PSDL = (SPL)I/30.B. - 101ogl0Afl/30.B.
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where

PSDL = Pressure spectral density level (dB)

(SPL) 1/30.B. = Sound pressure level in 1/3 octave band (dB)

Afl/30.B. = Frequency bandwidth of 1/3 octave band (Hz).

Conversion from effective (rms) pressure to sound pressure level:

p2

SPL = 10 log10 _r

where

SPL = Sound pressure level (dB)

p = Effective pressure (:'ms psi)

P0 = Reference pressure (2.9 × 10 -8 psi)
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APPENDIX. DEFINITION OF TERMS

d2x

Acceleration - d_ : A vector that specifies the time rate of change of velocity.

Note: Acceleration may be (a) oscillatory, in which case it may be defined by

the acceleration amplitude (if simple harmonic) or the rms acceleration (if

random}, or (b) nonoscillatory, in which case it is designated "sustained" or
"transient acceleration."

Amplitude Distribution Analysis. The process of performing various analyses
of the statistical properties of values of a wave. See Probability Density Func-

tion, and Probability Distribution.

Bandwidth: The difference in cps between the highest and lowest frequency in

a band, usually taken to be the half-power points. See Half-Power Points and

Bandwidth, Effective.

Bandwidth r Effective (ebw) : The bandwidth of an ideal system which (a) has

uniform transmission in its pass band equal to the maximum transmission of

the specified system and (b) transmits the same power as the specified system

when the two systems are receiving equal input signals having a uniform distri-

bution of energy at all frequencies.

ebw= f Gdf
O

where f is frequency in Hz and G is the ratio of the power at frequency f to the

power at the frequency of maximum power. (The International Dictionary of

Physics and Electronics, Van Nostrand, 1956. )

Channel_ Telemeter: Designates the complete transmission route of a tele-
metered function including transducer, signal conditioner, multiplexer trans-

mitter, receiver, tape recorder or other storage device ff used, demultiplexer,
and readout device.

Commutation: Commutation is a type of time division multiplexing transmis-

sion. See also time sharing.

Constant Bandwidth Analysis: In vibration, the analysis by means of either

(a) constant bandwidth contiguous filters, or (b) sweeping through the spectrum
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with a narrow-band filter. In "a" the output is displayed as a time history,

showing the variation of the data within the bandpass of each filteras a function

of time. In "b" the output is displayed as amplitude versus frequency; "b" may

be obtained by use of a heterodyne analyzer.

Continuous Spectrum: The spectrum of a wave with its energy continuously

distributedover a prescribed frequency region. A continuous spectrum has

no discrete components.

Crosstalk t Electronic: The interference between circuits wherein signals in
one circuit are undesirably reproduced in other circuits.

Cutoff Frecluency _ Filter: Represents a frequency limit beyond which the filter

begins to cut off or suppress signals.

Damped Natural Frequency: The natural frequency of a damped system. The
addition of a damping resistance to a single degree of freedom system decreases

the natural frequency.

wo=WoJ ( )
O

Damping: The dissipation of energy with time in a system; especially, the

diminishing of amplitude of an oscillation.

Damping, Critical: That value of damping which allows the most rapid return

of a system to its neutral position, without overshoot. In a simple harmonic

system, which follows the equation

a x" _ b x' _cx=O,

the condition for critical damping is that b = 2 _-ac .

Damping Factor: In a simple oscillatingsystem, in logarithmic damping this
-dt

factor constant e , the ratio of one amplitude peak to that next succeeding

itin the same direction.

Decibel: A unitfor the expression of power, voltage, current, or vibration in

logarithmic form.
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Powe r:

VoLtage:

Current:

Vibration:

10 logt0 (Pt/P2) where Pt and P2 are two powers or intensities

to be compared.

20 log10 (El/E2) where E t and E 2 are the rms voltages to be
compared. In rigorous use, it must be assumed that both

E 1 and E 2 are measured across the same value of resistance.

20 logl0 (I_/I2) where 11 and 12 are two currents to be

compared.

20 loglo (A1/A 2) where A 1 and A 2 are two acceleration levels
to be compared.

Degrees of Freedom: The number of independent generalized displacements

that are possible.

Discriminator: A device the voltage output of which is proportioned to the

frequency excursion of the input signal. It is used to convert an FM signal into

an AM signal.

Displacement: The instanteous distance of a vibrating particle from its position
of equilibrium.

Double Amplitude Displacement: Twice the peak displacement or amplitude of
a sine wave; that is, peak-to-peak displacement.

Dynamic Pressure: The kinetic energy per unit area of the air stream relative
to the vehicle.

Equalizer: A network inserted in a system to modify the frequency response
in a desired manner.

Excitation: (a) Addition of energy to a system, whereby it is transferred from

a state of equilibrium to a state of higher energy called an "excited state," and

(b) an external force or other input applied to a system that causes the system

to respond in some way.

Flutter: Resonant vibration of any part of a vehicle or of any structural element

in a fluid stream, maintained by oscillatory aerodynamic forces induced by
deflection of the structure.

Forced Oscillation: The oscillation of a system forced by the excitation.
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Forcing Function. A mathematical expression describing the relationship
between the force and a time variable.

Free-Free: A term indicating the vibration of a beam-like structure unsup-

ported at all points by structural members. A space vehicle, after liftoff, is
in the free-free condition.

Free Vibration: Oscillations that continue in a system after the applied force

has been removed.

Fundamental Mode of Vibration: The mode having the lowest natural frequency.

Gaussian or Normal Distribution: The Gaussian distribution is often called

normal distribution and is expressed by:

_X 2

62

e 2
P(X)--2--4ZV- "

The area under the curve from x 1 to x 2 represents the probability of obtaining

a value of x between x 1 and x 2.

Ground Noise: The residual system noise in the absence of the signal.

Half-Power Points (Vibration) : The requency points in a plot of a spectrum,
or a filter transmission, where the rms amplitude falls to 70.7 percent of

the maximum of the curve.

High Pass Filter: A filter designed to pass all the frequencies above a critical

or cutoff frequency while attenuating all frequencies below this critical fre-
quency.

Impedance: The complex ratio of a force-like quantity (force, pressure,

voltage) to a related velocity-like quantity (velocity, volume, current).

Impulse: The product of a force and the time during which the force is applied;
tx

more specifically the impulse is f fdt where the force is time dependent

t2

and equal to zero before time t 1 and after time t_.

Isolator: A device (such as springs, rubber pads, or mechanical linkages)

which reduces the transmission of vibration in a certain frequency range.
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Jerk:
d3x

The change of acceleration with respect to time:

Linear Average Analysis: Ananalysis which is obtained through the use of an

averaging circuit. Output may be expressed as average, or presented as

average adjusted to ms (stated) for random noise.

Linear System: A system is linear if the response is linearly proportional to

excitation for every element in the system.

Logarithmic Decrement: The natural logarithm of the radio of any two suc-

cessive amplitudes of like sign, in the decay of a single-frequency oscillation.

Logarithmic Sweep: A manner of varying frequency during a test wherein the
common logarithm of the frequency is a linear function of time,

Longitudinal Vibration: Vibration in a direction parallel to the longitudinal

axis. The positive direction is forward or in the direction of flight. Polarity

should be omitted when discussing wideband vibration measurements. It should

be used only with bending modes, linear acceleration, etc.

Mach Number: The ratio of any velocity to the velocity of sound in the same

medium at that temperature and pressure.

Mechanical System: An aggregate of matter comprising a defined configuration
of mass, mechanical stiffness, and mechanical resistance.

Mixer.- A device which adds to a more input signals linearly producing a com-

plex output with controlled percentages of each input signal.

Mode of Vibration: A characteristic motion pattern assumed by a system and

dictated by the geometry of the system.

Modulation (Van Nostrand) : The process or result of the process whereby

some characteristics of one signal are varied in accordance with another signal.

In common usage the modulated signal is called the carrier and the other

signal is called the modulating signal.

Multiple-Degree-of-Freedom System: A system for which two or more co-

ordinates are required to define completely the position of the system at any
instant.
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Multiplex Transmission: A technique for the simultaneous, or apparently
simultaneous, transmission of two or more intelligence signals on a single

carrier by frequencydivision, time division, or phase division.

Natural Frequency: The frequency of free oscillation of a system.

Noise: Any undesired sound, to be more exact, any unwanted distrubance

such as undesired electrical signals.

Non-Stationary Random Noise: A process or noise which does not meet the

requirements of a stationary random process.

Octave: An interval between two signals haveing a basic frequency ratio of 2.0.

Octave Analysis: An analysis made with an array of filters the center frequen-

cies of which are spearated by one octave and the effective bandwidth of which

is one octave.

Octave Sweep Test: See Logarithmic Sweep, above.

One-Half Octave: An interval between two signals having a basic frequency

ratio of 1.414

One-Half Octave Analysis: Same as one octave analysis except center fre-

quencies of filters are 1/2 octave apart, and the ebw is 1/2 octave.

One-Third Octave: An interval between two signals having a basic frequency

ratio of I. 26 (3/2).

One-Third Octave Analysis: Same as one octave analysis except center fre-

quencies are 1/3 octave apart, and the ebw is 1/3 octave.

Oscillograph: A device which produces a visual representation of an electrical

signal.

Peak-to-Peak: The algebraic difference between the ex£remes of a wave,

twice the peak value of a pure sine wave.

Peak Level: The maximum instantaneous level that occurs during a specified

time interval.

Periodic: The recurrence of an oscillation at equal increments of the inde-

pendent variable.
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Piezoelectric (Crystal) Transducer: A transducer that depends for its opera-

tion on the interaction between the electric charge and the deformation or

certain asymmetric crystals having piezoelectric properties.

Piezoelectric: The property of certain crystals in developing electrical charge

or potential difference across certain crystals faces when subjected to a strain

by mechanical forces, or conversely to produce a mechanical force when a

voltage is applied across the material; that is, quartz, tourmaline, Rochelle

salts, and certain ceramics.

Pitch Plane: The plane parallel with the longitudinal axis in which pitching

takes place.

Pitch Vibration: Vibration in a direction parallel to the pitch plane and per-

pendicular to the longitudinal axis. The positive direction is toward position
HI.

Power Spectral Density (PSD) : A measure of the power distribution as a

function of frequency, in a complex wave. It is expressed by the following

relationships: Where PSD is the intensity for one cycle of bandwidth, g is

the root-mean-square value of the acceleration.

PSD = g2/A F where g = J A2dt
O

"A" is the instantaneous amplitude of acceleration and "T" is the analyzer time

constant.

Probability Density Function: Generally, gives the probability of obtaining

a value "near" any continuous variable.

p (x) = dF (x)/dx .

Sometimes called frequency function. The first differential of the probability

distribution function, or simple, the ratio of instantaneous amplitude to rms

amplitudes.

Probability Distribution: A plot of the probability of occurrence of the magni-
tude of a signal or noise. See Amplitude Distribution Analysis, above.

PSD - See Power Spectral Density, above.
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Q (Quality Factor) PSD: Q is a measure of the sharpness of resonance of

frequecny selectivity Of a resonant vibratory system having a single degree of

freedom, either mechanical or electrical.

NOTE: In a mechanical system, this quantity is equal to one-half reciprocal

of the damping ratio. It is commonly used only with reference to a

lightly damped system, and is then approximately equal to the follow-

ing: (a) Transmissibility at resonance, (b) _ 5 where 5 is the

logarithmic decrement, (c) 2_ _/A_, where w is the stored energy

and A_ is the energy dissipation per cycle, and (d) fr/Af where fr is

the resonance frequency and A f is the bandwidth between the half-

power points.

This is true only for what is termed in electrical circuits a single-tuned filter.

In the case of multiple-tuned filters, although theoretically Q can be calculated,

it is simpler to measure it. Nearly rectangular bandpass filters, whether

obtained by cascading, paralleling, or ladder networks, commonly have a Q

five times as great as that computed by the given formula. Q may be computed

from a measurement of time constant by the following equation.

Q=1ff T
r c

where T is the dynamic time constant. (See Time Constant Definition. )
C

Random Noise: An oscillation of which instantaneous magnitude is not specified

for any given instant of time. Instantaneous magnitudes of a random noise are

specified only by probability distribution functions giving the fraction of the

total time that the magnitude, or some sequence of magnitudes, lies within a

specified range.

Random Wave Analyzer: A device, used to analyze random vibration data and

which produces power spectral density (PSD), linear average, peak, and

integrated amplitudes as a function of frequency.

Range Zero: First discrete second timing mark before the vehicle leaves the

launching pad.

Resonance: Resonance of a system in forced oscillation exists when any change,

however small, in the frequency of excitation causes a decrease in the response

of the system.
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Reverberation Chamber: An enclosure in which all of the inner surfaces have

been made as sound-reflective as possible.

Rise Time: (a) (Shock pulse) The time required for a shock pulse to reach its

maximum value. (b) Definition for electrical pulses in time of rise between

10 percent and 90 percent of maximum amplitude (see ASA 3.49 Acoustics
Terminology).

Roll Plane: The plane that is perpendicular to the longitudinal axis (roll axis)
in which rolling takes place.

Sensitive Axis: The axis of maximum sensitivity of an accelerometer.

Shock Spectrum: (a) A plot of the maximum acceleration experienced by a

single-degree-of-freedom system as a function of its own natural frequency

in response to an applied shock, and (b) frequency spectrum of a shock re-
su!ting from analysis by any method.

Signal to Noise Ratio: The ratio of the signal magnitude to the magnitude of the

noise received along with the signal.

Single-De_ree-of-Freedom System: A system for which one coordinate is re-

quired to define completely the configuration of the system at any instant.

Sound Pressure Level (SPL) : Twenty time the common logarithm of the ratio

of the pressure of the sound to the reference pressure.

Sound Pressure Level r Overall: Twenty time the logarithm (base 10) of the

ratio of the dynamic (sound) pressure in rms units to a reference dynamic
pressure of 0.0002 dynes/cm 2. The term overall indicates that the entire

equipment transmission spectrum of frequencies is utilized, no additional

filtering being accomplished. Bandpass bandwidth limits of equipment must
be stated; e.g., 20 to 20 000 Hz.

Spectrum: A continuous range of frequencies.

Spectrum Density (Power Spectrum): The mean-square amplitude of the output

of an ideal filter with unity gain responding to the oscillation, per unit bandwidth;

i. e., the limit for vanishingly small bandwidth of the quotient of the mean-

square amplitude divided by the bandwidth. For the practicing engineer, this
is usually the spectrum amplitude reported as if measured in I Hz bandwidths.
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Note (a) : In mathematical terms, the spectrum density function of y(t) is the

ensemble average of G(f) where (when a limit exists)

Lira
G(f) = T -ao T

2

dt

T

f y(t)I 27r ift ,
-T

f being freqa,_ncy (positive only).

Note (b) : The mean-square output of an ideal filter with unity gain in a finite

band is given by the integral of G(f) with respect to frequency over
the band.

Spectrum Envelope: The vibration level, or levels, which enclose the peaks

on a vibration spectrum plot.

Spring Constant: The ratio of the force acting upon an elastic member to the

resulting displacement of the point at which the force acts.

SS/FM (Single Sideband/Frequency Modulation) : A form of frequency division

multiplexing. A number of intelligence signals are each subjected to a linear

frequency trasformation to a different frequency. The resultant signals, each

at a different frequency, are combined in a linear adder and the composite is

used to frequency modulate a carrier signal.

Stationary Random Process: (a) A process which has the joint probability

density dependent upon only the time differences and not upon the actual time

instants. (b) A process in which the equivalent G rms of the random vibra-

tion does not vary with time, (c) A process of which all of the statisitcal

properties depend only on the time differences and not on the actual time
instants.

Steady State: Ca) A condition of dynamic balance, as in an equilibrium re-
action, where at equilibrium the concentration of each of the reactants remain

constant. (b) A relatively unchanging dynamic condition. (c) The condition

in a system when the rate of dissipation of energy is constant with respect
to time.
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Steady State Vibration: See Steady State, above.

Strain Bricl_eAccelerometer: A device composed of a mass supported by very

finestrain wire or thin foilwhich exhibits a change in resistance with applied
acceleration.

Strouhal Number: (a) The dimensionless parameter, S:

S = fD/V

where f is frequency, D is the exit diameter of a noise producing nozzle, and

V is the velocity of the gases at the nozzle exit, and (b) relates frequency of

shedding of vortices to the wind velocity and a characteristic dimension, where

S = fd/V

where

f-- frequency of vortex shedding.

d = diameter of structure in feet.

V = velocity of air in feet/second.

Subcarrier: An intermediate frequency that is modulated by intelligence signals,
and in turn is used to modulate the radio carrier.

Subcarrier Frec_uency Modulation: A frequency modulation technique employing

a subcarrier oscillator to derive a frequency modulated subcarrier.

Telemeter System: See Chapter V.

Time Constant_ In electronics, the time required for the voltage or current

in a circuit to rise to 63 percent of its final value, or fall to 37 percent of its

initial value_ as a result of a step input.

Time Constant_ Dynamic (of a resonant system) : The time required for the
amplitudes of decaying oscillation in a system to fall to 37 percent of the ini-
tial value.

T = 1/_B = Q/_f
C r

for a single-degree-of-freedom system.
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Time Sharing: The sharing of a telemetry channel between several vibration

measurements by transmission of a short sample of each in turn. In time

division multiplexing, samples are taken with a very high sampling rate with

respect to signal variations so that no information is lost; while in time sharing,

sampling occurs at very low rates which permits a representative measurement

or analysis during each sampling period. Typically, four measurements are

transmitted over one channel, each being sent for 4 seconds per sample.

Transducer: (a) A device capable of converting one form of energy to another,

and (b) the sensing element of a measuring channel. It transducers a mechan-

ical or physical quantity or movement into an analog signal which can be trans-

mitted to a remotely located recorder.

Transfer Function: A complex ratio of a response at one place in response to

an excitation to another place in a linear system. The transfer function, a

complex quantity, is the cross-spectral density between response and exci-

tation. Its absolute value is transmissibility.

Transient Vibration: A temporary vibration of a mechanical systcm, caused

by an impulse.

Transmissibility: The ratio of the response amplitude of a system to the ex-
citation amplitude. The ratio may be between forces, displacements, velocities,

or accelerations. (Glossary of Terms Frequently used in Acoustics, AIP,

October, 1960. ) A plot of transmissibility versus frequency is usually made.

See Transfer Function, Q, and Cross Spectral Density.

Vibration: The oscillation of a body or particle about a point of equilibrium.

A parameter that defines the motion of mechanical system.

Yaw Plane: The plane parallel with the longitudinal axis in which yawing takes

place. The pitch plane is perpendicular to the yaw plane.

Yaw Vibration: Vibration in a direction parallel to the yaw plane and a perpen-

dicular to the longitudinalaxis. The positive direction is toward the right

hand of an observer looking forward along the longitudinalaxis.
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